Privacy Policy Cookie Policy Terms and Conditions CAMP - Wikipedia, wolna encyklopedia

CAMP

Z Wikipedii

Z powodu ograniczeń technicznych tytuł tego artykułu jest nieprawidłowy. Właściwy tytuł to: cAMP.

cAMP - cykliczny AMP lub 3'-5'-cykliczny adenozynomonofosforan. Bierze udział w wielu reakcjach biochemicznych jako element transdukcji sygnału.

Struktura cAMP, kule reprezentują:  czerwona=tlen, jasnoniebieska=węgiel, biała=wodór, ciemnoniebiska=azot i purpurowa=fosfor
Powiększ
Struktura cAMP, kule reprezentują: czerwona=tlen, jasnoniebieska=węgiel, biała=wodór, ciemnoniebiska=azot i purpurowa=fosfor

Wzór sumaryczny cAMP: C10H12N5O6P

Cząsteczka ta jest wykorzystywana przez komórki jako jeden z tzw. 'drugich przekaźników' (second messengers). Pobudzenie niektórych receptorów błonowych komórek prowadzi do uruchomienia enzymu zwanego cyklazą adenylową, który wytwarza cząsteczki cAMP z ATP. Cząsteczki cAMP łączą się z różnymi białkami komórki i wpływają na wiele różnych procesów życiowych oraz na aktywność różnych genów.


1. Budowa cAMP -cyklicznego adenozynomonofosforanu.

cAMP - cykliczny adenozynomonofosforan jest nukleotydem składającym się z adeniny, rybozy i fosforanu. Nukleotydy są fosforanowymi pochodnymi nukleozydów, które są połączeniem zasady azotowej z pentozą. Wiązanie estrowe łączy resztę ortofosforanową (V) przy węglu 5’ rybozy z grupą hydroksylową przy węglu 3’ tej samej cząsteczki rybozy. W skrócie nazwę cyklicznego nukleotydu tworzy się umieszczając literkę „c” przed skrótem nazwy nukleotydu.

2. Powstawanie cAMP

Cykliczny AMP powstaje w drodze cyklizacji. (Przemiana związków organicznych łańcuchowych w związki pierścieniowe-cykliczne) ATP- adenozynotrójfosforan, jest aktywnym czynnikiem fosforylującym - łatwo odszczepia jedna resztę kwasu ortofosforanowego (V), w której grupa 3’ –OH jednostki rybozy atakuje alfa-fosforanową grupę ATP tworząc wiązanie fosfodiestrowe z równoczesnym uwolnieniem pirofosforanu. Tę wewnątrz molekularną reakcję katalizuje cyklaza adenylanowa (enzym znajdujący się w błonach komórkowych)* Jest to reakcja słabo energiczna, energii tej reakcji dostarcza następująca po niej hydroliza pirofosforanu, katalizowana przez pirofosfatazę. Bez cyklazy adenylanowej nie wystąpi reakcja powstania cAMP. Enzym fosfodiestraza dokonuje hydrolizy cyklazy a. Hamując wpływ na wytwarzanie cAMP mają: acetylocholina, somatostatyna, peptydy opiatowe.

  • Cząsteczka cyklazy składa się z części receptorowej, łącznika fosfolipidowego i części katalitycznej. Na stronie zewnętrznej błony jest część receptorowa wiążąca hormon, a na wewnętrznej katalityczna.

3. Funkcje cAMP

Aktywuje swoiste kinazy białkowe, które działają stymulująco na poszczególne enzymy i białka.

Aktywacja kinaz odbywa się poprzez łącznie cAMP z ich częścią regulatorową. Kinazy te następnie stymulują enzymy i białka regulatorowe w chromatynie jądrowej, powodując ich ufosforylowanie. Przykładem może być proces glikolizy i tlenowe przemiany ufosforylowanych monoz, zachodzące dzięki przekształcaniu się glukozy w glukozo-6-fosforan spowodowanym glikokinazą. Aktywne kinazy nie zależne od cAMP odgrywają kluczową rolę w powstawaniu odpowiedzi komórkowej.

Zwiększa przepuszczalność błon komórkowych

cAMP uwalnia jony Ca2+ z kompleksu ATP-Ca2+ i powoduje przemieszczenie innych jonów, co jest przyczyną zwiększenia przepuszczalności błon komórkowych.

Jest informatorem drugiego rzędu pośredniczącym i działaniu wielu hormonów (Np: noradrenaliny, glukagonu):

Układy umiejscowione w błonie komórkowej i uczestniczące w przeniesieniu informacji z jej zewnętrznej strony do wnętrza komórki określa się jako układy transdukcji. Mechanizm funkcjonowania systemu transdukcji obrazuje hipoteza tzw. Drugiego (wtórnego) przekaźnika (cAMP) zgodnie, z którą w działaniu hormonu na komórkę można wyróżnić cztery etapy: rozpoznanie informacji, przeniesienie jej, transmisja i odpowiedź. Hormon (H)- pierwszy przekaźnik wiąże się z receptorem na zewnętrznej stronie błony komórkowej. Pod wpływem kompleksu hormon-akceptor następuje zmiana konformacyjna w białku sprzęgającym G, że jest ono zdolne do oksydacji sektora występującego po wewnętrznej stronie plazmolemy. Gdy efektorem jest cyklaza adenylanowa (CA) prowadzi to do zwiększenia przepuszczalności cAMP pełniącego rolę drugiego przekaźnika. Związek ten powoduje przekształcenie nieaktywnej kinazy białkowej (kn) w jej aktywna postać (Ka). Następnie kinaza ta przez fosforylację aktywuje kolejny enzym (en i Ea – odpowiednio nieaktywna i aktywna postać enzymu), co wywołuje ciąg następnych reakcji związanych z wystąpieniem ostatecznej odpowiedzi komórkowej. Tak, więc w teorii wtórnego przekaźnika można wyróżnić 4 etapy związane z odpowiedzią komórkową wywołana przez pierwszy wskaźnik: 1-rozpoznanie informacji, 2-przeniesienie informacji, 3-transmisja, 4-odpowiedź komórki.

Powodowanie przemieszczenia w komórce jonów Na+ i K+.

Jest kluczowym związkiem integrującym regulację rozpadu i syntezy glikogenu.

Zwiększony poziom cAMP uruchamia serię reakcji, które powodują aktywacje fosforylazy, a równocześnie hamują działanie syntezy glikogenowej. Aktywacja fosforylazy polega na fosforyzowaniu specyficznych reszt seryny. Fosforylaza w mięśniu jest aktywowana przez adrenalinę za pośrednictwem cAMP. Zwiększenie poziomu cAMP aktywuje następnie kinazę białek zależna od cAMP, która katalizuje z udziałem ATP fosforylację nieaktywnej kinazy b fosforylazy do aktywnej kinazy a fosforylazy. Z kolei kinaza a w wyniku kolejnej fosforylacji aktywuje fosforylazę b do fosforylazy alfa. Wykazano również że aktywność fosforylazy a tym samym nasilenie glikogenolizy w mięśniach są zsynchronizowane z przejściowym wzrostem stężenia Ca2+ w cytoplazmie oraz ze skurczem mięśni. Rozpad glikogenu w mięśniach zwiększa się kilkaset razy bezpośrednio po rozpoczęciu jego skurczu. Obserwuje się wówczas uwolnienie jonów wapnia, które powodują szybka aktywację kinazy fosforylazy.

Przyspiesza przemiany w cyklu kwasów trikarboksylowych, wzmaga utlenianie komórkowe i syntezę ATP.

Stymuluje wzrost ruchliwości plemników.

Duża zawartość cAMP w plemniku koreluje z dobrą ruchliwością tych komórek, co ma uzasadnienie w kontroli aktywności tubuliny. Wzrost ruchliwości plemników, stymulowany przez cAMP, powoduje zmniejszenie wewnątrzkomórkowego ATP i tym samym przyśpiesza metabolizm komórkowy.

Wpływa na przemianę lipidów.

Hormony powodujące wyraźne przyspieszenie liolizy, (Np.: aminy katecholowe, adrenalina, noradrenalina), czynią to przez pobudzenie aktywności cyklazy adenylanowej, enzymu przekształcającego ATP w cAMP. Mechanizm ten jest analogiczny do warunkującego stymulację hormonalną glikogenolizy. CAMP przez stmulację kinazy białek przekształca nieaktywną, wrażliwą na hormon, lipazę triacyloglicerolową w jej formę aktywną. Tak wiec stężenie liolizy jest głownie kontrolowane przez ilość cAMP w tkance. Procesy, które powodują rozkład tego nukleotydu lub chronią go przed rozkładem, wywierają wpływ na lipolizę. cAMP jest przekształcany w 5’-AMP przez fosfodiestrazę cyklicznego 3’5’-nukleotydu. Aktywność tego enzymu jest hamowana prze pochodne ksantyny, takie jak kofeina i teofilina. Wiadomo, że picie kawy lub podawanie kofeiny powoduje u ludzi wyraźny i długotrwały wzrost stężenia WKT w osoczu krwi.

Zwiększa glikogenezę wątrobową i jest sygnałem głodu.

W przypadku niedoboru glukozy glukagon symuluje syntezę cAMP. Adrenalina i glukagon hamują glikolizę a pobudzają glukogenezę w wątrobie. Gdy zwiększa się ilość cAMP zwiększa się glukogeneza wątrobowa. Glukoza zmniejsza stężenie cAMP. CAMP w wieli indukowanych operonach może stymulować inicjację transkrypcji i służyć jako sygnał głodu np. u bakterii i ssaków.

4. Co się dzieje z cAMP gdy już spełni swoje zadania ???

Po spełnieniu swej funkcji cAMP ulega przekształceniu w 5’AMP dzięki zawartej w błonach fosfodiestrazie nukleotydów cyklicznych PDE. Aktywność enzymu jest uzależniona od obecności grup SH i jonów dwuwartościowych.

1. Budowa cAMP -cyklicznego adenozynomonofosforanu.

cAMP - cykliczny adenozynomonofosforan jest nukleotydem składającym się z adeniny, rybozy i fosforanu. Nukleotydy są fosforanowymi pochodnymi nukleozydów, które są połączeniem zasady azotowej z pentozą. Wiązanie estrowe łączy resztę ortofosforanową (V) przy węglu 5’ rybozy z grupą hydroksylową przy węglu 3’ tej samej cząsteczki rybozy. W skrócie nazwę cyklicznego nukleotydu tworzy się umieszczając literkę „c” przed skrótem nazwy nukleotydu.

2. Powstawanie cAMP

Cykliczny AMP powstaje w drodze cyklizacji. (Przemiana związków organicznych łańcuchowych w związki pierścieniowe-cykliczne) ATP- adenozynotrójfosforan, jest aktywnym czynnikiem fosforylującym - łatwo odszczepia jedna resztę kwasu ortofosforanowego (V), w której grupa 3’ –OH jednostki rybozy atakuje alfa-fosforanową grupę ATP tworząc wiązanie fosfodiestrowe z równoczesnym uwolnieniem pirofosforanu. Tę wewnątrz molekularną reakcję katalizuje cyklaza adenylanowa (enzym znajdujący się w błonach komórkowych)* Jest to reakcja słabo energiczna, energii tej reakcji dostarcza następująca po niej hydroliza pirofosforanu, katalizowana przez pirofosfatazę. Bez cyklazy adenylanowej nie wystąpi reakcja powstania cAMP. Enzym fosfodiestraza dokonuje hydrolizy cyklazy a. Hamując wpływ na wytwarzanie cAMP mają: acetylocholina, somatostatyna, peptydy opiatowe.

  • Cząsteczka cyklazy składa się z części receptorowej, łącznika fosfolipidowego i części katalitycznej. Na stronie zewnętrznej błony jest część receptorowa wiążąca hormon, a na wewnętrznej katalityczna.

3. Funkcje cAMP

Aktywuje swoiste kinazy białkowe, które działają stymulująco na poszczególne enzymy i białka.

Aktywacja kinaz odbywa się poprzez łącznie cAMP z ich częścią regulatorową. Kinazy te następnie stymulują enzymy i białka regulatorowe w chromatynie jądrowej, powodując ich ufosforylowanie. Przykładem może być proces glikolizy i tlenowe przemiany ufosforylowanych monoz, zachodzące dzięki przekształcaniu się glukozy w glukozo-6-fosforan spowodowanym glikokinazą. Aktywne kinazy nie zależne od cAMP odgrywają kluczową rolę w powstawaniu odpowiedzi komórkowej.

Zwiększa przepuszczalność błon komórkowych

cAMP uwalnia jony Ca2+ z kompleksu ATP-Ca2+ i powoduje przemieszczenie innych jonów, co jest przyczyną zwiększenia przepuszczalności błon komórkowych.

Jest informatorem drugiego rzędu pośredniczącym i działaniu wielu hormonów (Np: noradrenaliny, glukagonu):

Układy umiejscowione w błonie komórkowej i uczestniczące w przeniesieniu informacji z jej zewnętrznej strony do wnętrza komórki określa się jako układy transdukcji. Mechanizm funkcjonowania systemu transdukcji obrazuje hipoteza tzw. Drugiego (wtórnego) przekaźnika (cAMP) zgodnie, z którą w działaniu hormonu na komórkę można wyróżnić cztery etapy: rozpoznanie informacji, przeniesienie jej, transmisja i odpowiedź. Hormon (H)- pierwszy przekaźnik wiąże się z receptorem na zewnętrznej stronie błony komórkowej. Pod wpływem kompleksu hormon-akceptor następuje zmiana konformacyjna w białku sprzęgającym G, że jest ono zdolne do oksydacji sektora występującego po wewnętrznej stronie plazmolemy. Gdy efektorem jest cyklaza adenylanowa (CA) prowadzi to do zwiększenia przepuszczalności cAMP pełniącego rolę drugiego przekaźnika. Związek ten powoduje przekształcenie nieaktywnej kinazy białkowej (kn) w jej aktywna postać (Ka). Następnie kinaza ta przez fosforylację aktywuje kolejny enzym (en i Ea – odpowiednio nieaktywna i aktywna postać enzymu), co wywołuje ciąg następnych reakcji związanych z wystąpieniem ostatecznej odpowiedzi komórkowej. Tak, więc w teorii wtórnego przekaźnika można wyróżnić 4 etapy związane z odpowiedzią komórkową wywołana przez pierwszy wskaźnik: 1-rozpoznanie informacji, 2-przeniesienie informacji, 3-transmisja, 4-odpowiedź komórki.

Powodowanie przemieszczenia w komórce jonów Na+ i K+.

Jest kluczowym związkiem integrującym regulację rozpadu i syntezy glikogenu.

Zwiększony poziom cAMP uruchamia serię reakcji, które powodują aktywacje fosforylazy, a równocześnie hamują działanie syntezy glikogenowej. Aktywacja fosforylazy polega na fosforyzowaniu specyficznych reszt seryny. Fosforylaza w mięśniu jest aktywowana przez adrenalinę za pośrednictwem cAMP. Zwiększenie poziomu cAMP aktywuje następnie kinazę białek zależna od cAMP, która katalizuje z udziałem ATP fosforylację nieaktywnej kinazy b fosforylazy do aktywnej kinazy a fosforylazy. Z kolei kinaza a w wyniku kolejnej fosforylacji aktywuje fosforylazę b do fosforylazy alfa. Wykazano również że aktywność fosforylazy a tym samym nasilenie glikogenolizy w mięśniach są zsynchronizowane z przejściowym wzrostem stężenia Ca2+ w cytoplazmie oraz ze skurczem mięśni. Rozpad glikogenu w mięśniach zwiększa się kilkaset razy bezpośrednio po rozpoczęciu jego skurczu. Obserwuje się wówczas uwolnienie jonów wapnia, które powodują szybka aktywację kinazy fosforylazy.

Przyspiesza przemiany w cyklu kwasów trikarboksylowych, wzmaga utlenianie komórkowe i syntezę ATP.

Stymuluje wzrost ruchliwości plemników.

Duża zawartość cAMP w plemniku koreluje z dobrą ruchliwością tych komórek, co ma uzasadnienie w kontroli aktywności tubuliny. Wzrost ruchliwości plemników, stymulowany przez cAMP, powoduje zmniejszenie wewnątrzkomórkowego ATP i tym samym przyśpiesza metabolizm komórkowy.

Wpływa na przemianę lipidów.

Hormony powodujące wyraźne przyspieszenie liolizy, (Np.: aminy katecholowe, adrenalina, noradrenalina), czynią to przez pobudzenie aktywności cyklazy adenylanowej, enzymu przekształcającego ATP w cAMP. Mechanizm ten jest analogiczny do warunkującego stymulację hormonalną glikogenolizy. CAMP przez stmulację kinazy białek przekształca nieaktywną, wrażliwą na hormon, lipazę triacyloglicerolową w jej formę aktywną. Tak wiec stężenie liolizy jest głownie kontrolowane przez ilość cAMP w tkance. Procesy, które powodują rozkład tego nukleotydu lub chronią go przed rozkładem, wywierają wpływ na lipolizę. cAMP jest przekształcany w 5’-AMP przez fosfodiestrazę cyklicznego 3’5’-nukleotydu. Aktywność tego enzymu jest hamowana prze pochodne ksantyny, takie jak kofeina i teofilina. Wiadomo, że picie kawy lub podawanie kofeiny powoduje u ludzi wyraźny i długotrwały wzrost stężenia WKT w osoczu krwi.

Zwiększa glikogenezę wątrobową i jest sygnałem głodu.

W przypadku niedoboru glukozy glukagon symuluje syntezę cAMP. Adrenalina i glukagon hamują glikolizę a pobudzają glukogenezę w wątrobie. Gdy zwiększa się ilość cAMP zwiększa się glukogeneza wątrobowa. Glukoza zmniejsza stężenie cAMP. CAMP w wieli indukowanych operonach może stymulować inicjację transkrypcji i służyć jako sygnał głodu np. u bakterii i ssaków.

4. Co się dzieje z cAMP gdy już spełni swoje zadania ???

Po spełnieniu swej funkcji cAMP ulega przekształceniu w 5’AMP dzięki zawartej w błonach fosfodiestrazie nukleotydów cyklicznych PDE. Aktywność enzymu jest uzależniona od obecności grup SH i jonów dwuwartościowych.


Zobacz też: AMP


Zalążek artykułu To jest tylko zalążek artykułu związanego z biologią. Jeśli możesz, rozbuduj go.
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu