Privacy Policy Cookie Policy Terms and Conditions Funzione suriettiva - Wikipedia

Funzione suriettiva

Da Wikipedia, l'enciclopedia libera.

Una funzione si dice suriettiva (o surgettiva) quando l'immagine coincide con il codominio, ovvero quando ogni elemento y del codominio è immagine di almeno un punto del dominio.

Formalmente, una funzione f:X \rightarrow Y è suriettiva se \forall y \in Y, \exist x \in X | f(x) = y.

In termini alternativi, una funzione fX → Y si dice suriettiva se e solo se l'insieme immagine f(X) coincide con il codominio Y. Una funzione suriettiva è anche detta suriezione.

La composta di due funzioni suriettive è a sua volta suriettiva; ma se g \circ f è suriettiva, possiamo concludere solo che g è suriettiva, f può non esserlo.

[modifica] Esempi e controesempi

  • Per ogni insieme X, la funzione identità idX su X è suriettiva.
  • La funzione fR → R definita da f(x) = 2x + 1 è suriettiva, perché per ogni numero reale y si ha f(x) = y dove x è (y - 1)/2.
  • La funzione logaritmo naturale ln: R+ → R è suriettiva.
  • Sia la parabola f(x) = x2 definita in maniera seguente: f:  \mathbb{R} \longrightarrow \mathbb{R}; questa funzione non è suriettiva in quanto le immagini del codominio sono tutti numeri reali non negativi, mentre il dominio comprende anche i numeri reali negativi. Per rendere suriettiva questa funzione è sufficiente effettuare questa restrizione: f: \mathbb{R} \longrightarrow \mathbb{R}^+ \cup \{ 0 \}, ovvero considerare un codominio diverso.

Nell'analisi matematica vengono considerate quasi sempre funzioni suriettive.

Se abbiamo una funzione reale di una variabile reale che è suriettiva allora tracciando sul suo piano cartesiano una qualsiasi retta parallela all'asse x questa intersecherà il grafico della funzione almeno una volta.

[modifica] Proprietà

  • Una funzione fX → Y è suriettiva se e solo se esiste una funzione gY → X tale che f o g è la funzione identità su Y. (Tale proposizione è equivalente all'assioma della scelta.)
  • Se f e g sono entrambe suriettive, allora f o g è suriettiva.
  • Se f o g è suriettiva, allora f è suriettiva (ma g può non esserlo).
  • fX → Y è suriettiva se e solo se, per ogni coppia di funzioni g,h:Y → Z, ogni volta che g o f = h o f, allora g = h. In altri termini, le funzioni suriettive sono esattamente gli epimorfismi nella categoria Ins di tutti gli insiemi.
  • Se fX → Y è suriettiva e B è un sottoinsieme di Y, allora f(f −1(B)) = B. Ne consegue che B può essere ricostruito dalla sua controimmagine f −1(B).
  • Per ogni funzione hX → Z esistono una suriezione f e una funzione iniettiva g tale che h può essere decomposta come h = g o f. Tale decomposizione è unica a meno di un isomorfismo, e f può essere vista come una funzione avente gli stessi valori di h ma il cui codominio è ristretto all'insieme immagine h(W) di h, che è un sottoinsime del codominio Z di h.
  • Aggregando insieme tutte le controimmagini di una prefissata immagine, ogni funzione suriettiva induce una funzione biunivoca definita sul quoziente del suo dominio. In particolare, ogni funzione suriettiva f : AB può essere fattorizzata in una proiezione seguita da una biiezione nel seguente modo. Sia A/~ l'insieme delle classi di equivalenza di A rispetto alla seguente relazione d'equivalenza: x ~ y se e solo se f(x) = f(y). Sia P(~) : AA/~ la proiezione che associa ogni x in A alla sua classe d'equivalenza [x]~, e sia fP : A/~ → B la funzione ben definita data da fP([x]~) = f(x). Allora f = fP o P(~).
  • Se fX → Y è suriettiva, allora X ammette almeno lo stesso numero di elementi di Y.
  • Se X e Y sono finiti con lo stesso numero di elementi, allora f : X → Y è suriettiva se e solo se f è iniettiva.

[modifica] Voci correlate

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu