Térelmélet
A Wikipédiából, a szabad lexikonból.
A térelméletek egy fizikai elméletek egy gyakran használt és tipikus fajtája. Noha az újabb mezőelmélet (az angol field theory tükörfordítása) elnevezés pontosabb, mégis a régebbi térelmélet kifejezés használata sokkal elterjedtebb.
Térelméletek esetén a tér (téridő) minden pontjában definálva van skalár (például hőmérséklet), vektor (például nyomás) vagy tenzor (például a feszültségtenzor a rugalmas közegek dinamikájában) jellegű mennyiség és ezek folytonos függvényt (mezőt) alkotnak a térben (téridőben). Az egyes tér(idő) pontokban a fizikai mennyiségek eleget tesznek az ún. Euler-Lagrange mozgásegyenleteknek, amelyek egy általános variációs elvből, a legkisebb hatás elvéből származtathatók:
[szerkesztés] Térelméletek csoportosítása
Klasszikus térelméletről (például elektrodinamika, hidrodinamika) beszélünk, ha ez a fizikai mennyiség a klasszikus fizika keretei között marad, azaz a kvantummechanikai elveket nem tekintjük érvényesnek a fizikai mezőre. A klasszikus térelmélet is lehet nemrelativisztikus és relativisztikus, attól függően, hogy a Galilei- vagy a Lorentz-transzformációra invariáns a mező az adott pontban.
Kvantumtérelméletek (például kvantumelektrodinamika, kvantum-színdinamika) esetén a mező adott pontjára a komplementer fizikai mennyiségek (pl. hely és impulzus vagy elektromos és mágneses térerősség, stb.) a Heisenberg-féle határozatlansági elvnek tesznek eleget. Matematikailag ezt azzal lehet leírni, hogy a fizikai mennyiségeket reprezentáló operátorok nem felcserélhetőek (a szorzás nem kommutatív).
[szerkesztés] Térelmélet Lagrange-formalizmussal
A térelméletek egyik szokásos tárgyalása a Lagrange-formalizmus. (A másik, egyenértékű, tárgyalásmód a Hamilton-formalizmus.)
Ha a φ folytonos mezőből, amely bármely rendű tenzor lehet (vagyis akár skalár, akár vektor, stb.) és amely egy sűrűségfüggvény, képezzük a Lagrange-hatást a teljes V téren (vagy relativisztikus térelmélet esetén téridőn) való integrálással:
akkor ebből a legkisebb hatás elve alapján () kapjuk a Euler-Lagrange mozgásegyenleteket
- (ahol a téridő szerinti derivált)
A fizikai mező minden pontján ezek az egyenletek és a mezőre érvényes határfeltételek szabják meg a mező változását. Például az elektrodinamika esetén (ez esetben φ a 4-dimenziós Fμν térerősségtenzor) a fenti mozgásegyenletek pontosan a jól ismert Maxwell-egyenletek lesznek.