Teorema da incompletude de Gödel
Na Galipedia, a wikipedia en galego.
Os dous Teoremas da incompletude" foron demostrados por Kurt Gödel no 1931.
Índice |
[editar] Primeiro teorema
O primeiro teorema da incompletitude, un dos mais loubados resultados da lóxica matemática, afirma dunha forma simplificada:
- En calquer formalismo matemático consistente suficientemente robusto para definir os conceitos de números naturais (da aritmética), existirá a posibilidade de formar unha afirmación indecidible, ou sexa, que non poida ser demostrada como verdadeira ou falsa.
Dun xeito mais formal, Gödel postulouno inicialmente como:
- Para calquer teoría formal na que se poden demostrar uns feitos aritméticos básicos, é posible construir unha afirmación aritmética na que, se a teoría é omega-consistente, é verdade, mais non é demostrable ou refutable nesa teoría.
Aqui, "teoría" significa un conxunto de afirmacións pechadas baixo unhas certas regras de inferencia lóxica. A teoría é consistente se non contén contradiccions. Omega-consistente é un termo técnico, mais estricto do que "consistente" a secas.
[editar] Segundo teorema
O segundo teorema da incompletude de Gödel, é consecuencia do primeiro, é demostrado por formalización do proprio primeiro teorema en si, e enunciase como:
- Nengún sistema consistente se pode utilizar para demostrar a súa propria consistencia.
Dun xeito mais formal, Gödel demostra que:
- Para calquer teoría formal T na que os feitos aritmeticos basicos son demostrables, T demostra a súa propria consistencia se e soamente se T é inconsistente.
Hai unha sotileza técnica no segundo teorema: ata qué ponto de exactitude imos expresar a consistencia de T na propria linguaxe T. Hai moitos camiños para facelo, e non todos eles levan ao mesmo resultado. En particular, diferentes formalizacións da afirmacion de que T é consistente pode ser inequivalente en T, e alguns poden incluso ser demostrables.
[editar] Consecuencias
A seguinte reescritura do segundo teorema é perturbadora para os fundamentos das matematicas:
- Se para un sistema axiomático se pode demostrar, baseandose nel mesmo, que é consistente e completo, entón é inconsistente.
O resultado xeral dos dous teoremas foi devastador para unha abordaxe filosófica da matemática coñecida como Programa de Hilbert. David Hilbert propuxo que a consistencia dos sistemas máis complexos, como análise real, poderían ser probados en termos de sistemas máis simples. Así, a consistencia de toda a matemática sería reducida á aritmética básica. O segundo teorema da incompletude de Gödel mostra que a aritmética básica non pode ser usada para probar a súa propria consistencia, e polo tanto non pode ser usada para probar a consistencia de nada máis forte.
[editar] Interpretacións simples
O teorema de Gödel é quizais o máis sorprendente e comentado resultado matemático do século XX. De seguro, é o máis incomprendido e un dos únicos teoremas que se presta a acaloradas discusións filosóficas.
- O ser humano nunca poderá chegar a comprenderse a si mesmo por unha vía racional (deducción discutible, proposta polo autor desta páxina)
- Unha explicación xamais chega a ser totalmente autoexplicativa
[editar] Vexase tamén
Wikipedia (en inglés) do libro "Gödel, Escher, Bach"