Privacy Policy Cookie Policy Terms and Conditions 結合代數 - Wikipedia

結合代數

维基百科,自由的百科全书

Image:03wiki-zn-frontpage-icon.gif結合代數正在翻译。欢迎您积极翻译与修订
目前已翻译25%,原文在en:Associative algebra

數學裡,結合代數是指一向量空間(或更一般地,一),其允許向量有具分配律結合律的乘法。因此,它為一特殊的代數。

目录

[编辑] 定義

一於K上的結合代數A的定義為一於K上的向量空量,其K-雙線性映射A x AA 具有結合律:

  • 對任何於A內的xyz,(x y) z = x (y z)。

此乘法的雙線性性質可表示成

  • 對任何於A內的xyz,满足结合率: (x + y) z = x z + y z
  • 對任何於A內的xy及於Ka,满足分配率: x (y + z) = x y + x z
  • 對任何於A內的xy及於K內的a,满足结合率 a (x y) = (a x) y = x (a y)。

A含有單位元,即元素1使得對任一於A內的x,1x = x1 = x,則稱A具一的結合代數單作結合代數。 此一代數為一個,且包含所以體K內的元素a,由a1相連接。

上述的定義沒有任何改變地廣義化成了於可交換環K上的代數(除了K-線性空間被稱做而非向量空間之外)。詳述請見代數 (環論)。

於一體K上的結合代數A維度為其K-向量空間的維度。

[编辑] 例子

  • 其元素為體Kn×n方陣形成了一於K上的單作結合代數。
  • 複數形成了於實數上的二維單作結合代數。
  • 四元數形成了於實數上的四維單作結合代數(但不為一複數上的代數,因為複數和四元數不可交換)。
  • 實係數多項式形成了一於實數上的單作結合代數。
  • 給定一巴拿赫空間X,其連續線性算子 A : nX形成了一單作結合代數(以算子複合做為乘法);事實上,這是一個巴拿赫代數。
  • 給定一拓撲空間X,於X上的連續實(複)值函數形成了一單作結合代數;這裡,加法和乘法是對函數的各點相加和相乘。
  • 一非單作的結合代數為所有x趨向無限時的極限為零的函數f: RR所組成的集合。
  • 克理福代數也是結合代數的一種,在幾何物理上都很有用。
  • 局部有限偏序集合的相交代數為一組合數學內的單作結合代數。

[编辑] 代數同態

AB為體K上的結合代數,代數同態 h: AB則是一K-線性映射,其對任何於A內的xy,會有h(xy) = h(x) h(y)的關係。加上態射的概念,於K上的結合代數組成的類便成了一範疇

舉個例子,設A為所有實值連續函數RR所組成的代數,及B=R,這兩者都是於R上的代數,且其每一連續函數f指定至數字f(0)的映射會是個由AB的代數同態。

[编辑] 免指標標記法

前面所述之結合代數的定義,其結合律的定義是對A的所有元素而定的。但有時不涉及A內元素的結合律定義會較方便。 這可以由下列方法作到。一定義成在一向量空間A內映射M的代數:

M: A \times A \rightarrow A

其為結合代數當M有下面性質:

M \circ (\mbox {Id} \times M) = M \circ (M \times \mbox {Id})

其中,符號\circ表示函數的複合,而Id則為恆等函數:對所有於A內的xId(x) = x。要了解其定義是等價的,只需要知道上述式子的兩邊都是三個引數的函數。例如,式子左邊為

( M \circ (\mbox {Id} \times M)) (x,y,z) = M (x, M(y,z))

類似地,一單作結合代數可以以單位映射\eta: K \rightarrow A來定義,其性質如下:

M \circ (\mbox {Id} \times \eta ) = s = M \circ (\eta \times \mbox {Id})

其中,單位映射η將K內的元素k映射至A內的元素k1,這裡1A單位元。映射s只是個純量乘積:s:K\times A \rightarrow A

[编辑] 廣義化

One may consider associative algebras over a commutative ring R: these are modules over R together with a R-bilinear map which yields an associative multiplication. In this case, a unital R-algebra A can equivalently be defined as a ring A with a ring homomorphism RA.

The n-by-n matrices with integer entries form an associative algebra over the integers and the polynomials with coefficients in the ring Z/nZ (see modular arithmetic) form an associative algebra over Z/nZ.

[编辑] 共代數

An associative unitary algebra over K is based on a morphism A×AA having 2 inputs (multiplicator and multiplicand) and one output (product), as well as a morphism KA identifying the scalar multiples of the multiplicative identity. These two morphisms can be dualized using categorial duality by reversing all arrows in the commutative diagrams which describe the algebra axioms; this defines the structure of a coalgebra.

There is also an abstract notion of F-coalgebra.

[编辑] 表示

A representation of an algebra is a linear map \rho:A\rightarrow gl(V) from A to the general linear algebra of some vector space (or module) V that preserves the multiplicative operation: that is, ρ(xy) = ρ(x)ρ(y).

Note, however, that there is no natural way of defining a tensor product of representations of associative algebras, without somehow imposing additional conditions. Here, by tensor product of representations, the usual meaning is intended: the result should be a linear representation on the product vector space. Imposing such additional structure typically leads to the idea of a Hopf algebra or a Lie algebra, as demonstrated below.

[编辑] Motivation for a Hopf algebra

Consider, for example, two representations \sigma:A\rightarrow gl(V) and \tau:A\rightarrow gl(W). One might try to form a tensor product representation \rho: x \mapsto \rho(x) = \sigma(x) \otimes \tau(x) according to how it acts on the product vector space, so that

\rho(x)(v \otimes w) = (\sigma(x)(v)) \otimes (\tau(x)(w)).

However, such a map would not be linear, since one would have

\rho(kx) = \sigma(kx) \otimes \tau(kx) = k\sigma(x) \otimes k\tau(x) = k^2 (\sigma(x) \otimes \tau(x)) = k^2 \rho(x)

for k \in  K. One can rescue this attempt and restore linearity by imposing additional structure, by defining a map \Delta:A \rightarrow A \times A, and defining the tensor product representation as

\rho = (\sigma\otimes \tau) \circ \Delta.

Here, Δ is a comultiplication. The resulting structure is called a bialgebra. To be consistent with the definitions of the associative algebra, the coalgebra must be co-associative, and, if the algebra is unital, then the co-algebra must be unital as well. Note that bialgebras leave multiplication and co-multiplication unrelated; thus it is common to relate the two (by defining an antipode), thus creating a Hopf algebra.

[编辑] Motivation for a Lie algebra

One can try to be more clever in defining a tensor product. Consider, for example,

x \mapsto \rho (x) = \sigma(x) \otimes \mbox{Id}_W + \mbox{Id}_V \otimes \tau(x)

so that the action on the tensor product space is given by

\rho(x) (v \otimes w) = (\sigma(x) v)\otimes w + v \otimes (\tau(x) w).

This map is clearly linear in x, and so it does not have the problem of the earlier definition. However, it fails to preserve multiplication:

\rho(xy) = \sigma(x) \sigma(y) \otimes \mbox{Id}_W + \mbox{Id}_V \otimes \tau(x) \tau(y).

But, in general, this does not equal

\rho(x)\rho(y) =  \sigma(x) \sigma(y) \otimes \mbox{Id}_W +  \sigma(x) \otimes \tau(y) + \sigma(y) \otimes \tau(x) + \mbox{Id}_V \otimes \tau(x) \tau(y).

Equality would hold if the product xy were antisymmetric (if the product were the Lie bracket, that is, xy \equiv M(x,y) = [x,y]), thus turning the associative algebra into a Lie algebra.

[编辑] 參考

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu