結合代數
维基百科,自由的百科全书
在數學裡,結合代數是指一向量空間(或更一般地,一模),其允許向量有具分配律和結合律的乘法。因此,它為一特殊的代數。
目录 |
[编辑] 定義
一於體K上的結合代數A的定義為一於K上的向量空量,其K-雙線性映射A x A → A 具有結合律:
- 對任何於A內的x、y和z,(x y) z = x (y z)。
此乘法的雙線性性質可表示成
- 對任何於A內的x、y和z,满足结合率: (x + y) z = x z + y z;
- 對任何於A內的x、y及於K的a,满足分配率: x (y + z) = x y + x z;
- 對任何於A內的x、y及於K內的a,满足结合率 a (x y) = (a x) y = x (a y)。
當A含有單位元,即元素1使得對任一於A內的x,1x = x1 = x,則稱A為具一的結合代數或單作結合代數。 此一代數為一個環,且包含所以體K內的元素a,由a1相連接。
上述的定義沒有任何改變地廣義化成了於可交換環K上的代數(除了K-線性空間被稱做模而非向量空間之外)。詳述請見代數 (環論)。
於一體K上的結合代數A的維度為其K-向量空間的維度。
[编辑] 例子
- 其元素為體K的n×n方陣形成了一於K上的單作結合代數。
- 複數形成了於實數上的二維單作結合代數。
- 四元數形成了於實數上的四維單作結合代數(但不為一複數上的代數,因為複數和四元數不可交換)。
- 實係數多項式形成了一於實數上的單作結合代數。
- 給定一巴拿赫空間X,其連續線性算子 A : n → X形成了一單作結合代數(以算子複合做為乘法);事實上,這是一個巴拿赫代數。
- 給定一拓撲空間X,於X上的連續實(複)值函數形成了一單作結合代數;這裡,加法和乘法是對函數的各點相加和相乘。
- 一非單作的結合代數為所有x趨向無限時的極限為零的函數f: R → R所組成的集合。
- 克理福代數也是結合代數的一種,在幾何和物理上都很有用。
- 局部有限偏序集合的相交代數為一組合數學內的單作結合代數。
[编辑] 代數同態
若A和B為體K上的結合代數,代數同態 h: A → B則是一K-線性映射,其對任何於A內的x、y,會有h(xy) = h(x) h(y)的關係。加上態射的概念,於K上的結合代數組成的類便成了一範疇。
舉個例子,設A為所有實值連續函數R → R所組成的代數,及B=R,這兩者都是於R上的代數,且其每一連續函數f指定至數字f(0)的映射會是個由A至B的代數同態。
[编辑] 免指標標記法
前面所述之結合代數的定義,其結合律的定義是對A的所有元素而定的。但有時不涉及A內元素的結合律定義會較方便。 這可以由下列方法作到。一定義成在一向量空間A內映射M的代數:
其為結合代數當M有下面性質:
其中,符號表示函數的複合,而Id則為恆等函數:對所有於A內的x,Id(x) = x。要了解其定義是等價的,只需要知道上述式子的兩邊都是三個引數的函數。例如,式子左邊為
類似地,一單作結合代數可以以單位映射來定義,其性質如下:
其中,單位映射η將K內的元素k映射至A內的元素k1,這裡1是A的單位元。映射s只是個純量乘積:。
[编辑] 廣義化
One may consider associative algebras over a commutative ring R: these are modules over R together with a R-bilinear map which yields an associative multiplication. In this case, a unital R-algebra A can equivalently be defined as a ring A with a ring homomorphism R→A.
The n-by-n matrices with integer entries form an associative algebra over the integers and the polynomials with coefficients in the ring Z/nZ (see modular arithmetic) form an associative algebra over Z/nZ.
[编辑] 共代數
An associative unitary algebra over K is based on a morphism A×A→A having 2 inputs (multiplicator and multiplicand) and one output (product), as well as a morphism K→A identifying the scalar multiples of the multiplicative identity. These two morphisms can be dualized using categorial duality by reversing all arrows in the commutative diagrams which describe the algebra axioms; this defines the structure of a coalgebra.
There is also an abstract notion of F-coalgebra.
[编辑] 表示
A representation of an algebra is a linear map from A to the general linear algebra of some vector space (or module) V that preserves the multiplicative operation: that is, ρ(xy) = ρ(x)ρ(y).
Note, however, that there is no natural way of defining a tensor product of representations of associative algebras, without somehow imposing additional conditions. Here, by tensor product of representations, the usual meaning is intended: the result should be a linear representation on the product vector space. Imposing such additional structure typically leads to the idea of a Hopf algebra or a Lie algebra, as demonstrated below.
[编辑] Motivation for a Hopf algebra
Consider, for example, two representations and . One might try to form a tensor product representation according to how it acts on the product vector space, so that
- .
However, such a map would not be linear, since one would have
for . One can rescue this attempt and restore linearity by imposing additional structure, by defining a map , and defining the tensor product representation as
- .
Here, Δ is a comultiplication. The resulting structure is called a bialgebra. To be consistent with the definitions of the associative algebra, the coalgebra must be co-associative, and, if the algebra is unital, then the co-algebra must be unital as well. Note that bialgebras leave multiplication and co-multiplication unrelated; thus it is common to relate the two (by defining an antipode), thus creating a Hopf algebra.
[编辑] Motivation for a Lie algebra
One can try to be more clever in defining a tensor product. Consider, for example,
so that the action on the tensor product space is given by
- .
This map is clearly linear in x, and so it does not have the problem of the earlier definition. However, it fails to preserve multiplication:
- .
But, in general, this does not equal
- .
Equality would hold if the product xy were antisymmetric (if the product were the Lie bracket, that is, ), thus turning the associative algebra into a Lie algebra.
[编辑] 參考
- Ross Street, Quantum Groups: an entrée to modern algebra (1998). (Provides a good overview of index-free notation)