Privacy Policy Cookie Policy Terms and Conditions Словарь терминов теории групп — Википедия

Словарь терминов теории групп

Материал из Википедии — свободной энциклопедии

Для общего описания теории групп, смотри группа (математика) и теория групп.

Курсив обозначает ссылку на этот словарь.

# А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я


p-группа — группа все элементы в которой имеет порядок равный некоторой степени простого числа p (не обязательно одинаковой у всех элементов). Также говорят о примарной группе. Более подробно см. в статье конечная p-группа.

[править] А

Абелева группа. см. коммутативная группа

[править] Г

Группа

Группа Шмидта — это ненильпотентная группа, все собственные подгруппы которой нильпотентны.

Группа Миллера-Морено — это неабелева группа, все собственные подгруппы которой абелевы.

Главный ряд подгруппряд подгрупп, в котором Gi — максимальная нормальная в G подгруппа из Gi + 1, для всех членов ряда.

Гомоморфизм групп — отображение групп f : (G,*) → (H,×) такое, что

f(a * b) = f(a) × f(b)

для произвольных a и b в G.

[править] Д

Действие группы

Длина ряда подгрупп — число n в определении ряда подгрупп.

[править] Е

Естественный гомоморфизм на факторгруппу по нормальной подгруппе H - это гомоморфизм, ставящий в соответствие каждому элементу a группы смежный класс aH. Ядром этого гомоморфизма является подгруппа H.

[править] И

Изоморфизм группбиективный гомоморфизм.

Изоморфные группы — группы, между которыми существует хотя бы один изоморфизм.

Индекс подгруппы H в Gмощность (т.е. количество) правых (или левых) классов смежности. Обычно обозначается [G : H]. Для конечных группы G, индекс её подгруппы равен отношению порядков [G : H] = |G |/|H|.

Индексы ряда подгрупп — индексы | Gi + 1:Gi | в определении субнормального ряда подгрупп.

[править] К

Класс смежности/смежный класс (правый или левый) подгруппы H в G. Правый класс смежности элемента g \in G по подгруппе H в G есть множество

gH= \{gh|h\in H\}.

Аналогично определяется левый класс смежности:

Hg= \{hg|h\in H\}.

Класс сопряжённости элемента g \in G есть множество

\{hgh^{-1}|h\in G\}.

Коммутант группы есть подгруппа, порождённая всеми коммутаторами группы, обычно обозначается [G,G] или G'.

Коммутативная группа. Группа G является коммутативной, или абелевой, если её операция * коммутативна, то есть g*h=h*g \forall g, h \in G.

Коммутатор элементов g и h есть элемент [g,h] = g − 1h − 1gh.

Коммутатор подгрупп

Конечная p-группаp-группа конечного порядка pn.

Конечно определённая группа — группа, обладающая конечным числом образующих и задаваемая в этих образующих конечным числом соотношений.

Конечнопорождённая группа — группа, обладающая конечной системой образующих.

Кручение, TorG, коммутативной или нильпотентной группы G есть подгруппа всех элементов конечного порядка.

[править] Л

Локальное свойство группы G. Говорят, что группа G обладает локальным свойством P, если любая конечно порождённая подгруппа из G обладает этим свойством. Примерами могут служить локальная конечность, локальная нильпотентность.

Локальная теорема. Говорят, что для некоторого свойства P групп справедлива локальная теорема, если всякая группа, локально обладающая этим свойством, сама обладает им. Локальная теорема справедлива, например, в классе абелевых групп, но не справедлива в классе конечных групп.

[править] М

Метабелева группа - группа, второй коммутант которой тривиален (разрешимая ступени 2).

Метациклическая группа ― группа, обладающая циклической нормальной подгруппой, факторгруппа по которой также циклическая. Всякая конечная группа, порядок которой свободен от квадратов (т. е. не делится на квадрат какого-либо числа), является метациклической.

Мультипликативная группа тела ― группа, элементами которой являются все ненулевые элементы данного тела, а операция совпадает с операцией умножения в теле.

[править] Н

Нильпотентная группа — группа, обладающая центральным рядом подгрупп. Минимальная из длин таких рядов называется её классом нильпотентности.

Норма группы — совокупность элементов группы, перестановочных со всеми подгруппами, то есть пересечение нормализаторов всех её подгрупп.

Нормализатор подгруппы H в G — это максимальная подгруппа G, в которой H нормальна. Иначе говоря, нормализатор есть стабилизатор H при действии G на множестве своих подгрупп сопряжениями, то есть

N(H)=\{g\in G|gHg^{-1}=H\}.

Нормальная подгруппа (инвариантная подгруппа, нормальный делитель). H есть нормальная подгруппа G, если для любого элемента g в G gH = Hg, то есть правые и левые классы смежности H в G совпадают. Иначе говоря, если \forall g \in G\quad \forall h \in H\quad ghg^{-1} \in H.

Нормальный ряд подгрупп - ряд подгрупп, в котором Gi нормальна в G, для всех членов ряда.

[править] О

Образующая

[править] П

Перестановочные элементы — пара элементов a,b\in G такие что ab = ba.

Период группынаименьшее общее кратное порядков элементов данной группы.

Периодическая группа ― группа, каждый элемент которой имеет конечный порядок.

Подгруппа — подмножество H группы G, которое является группой относительно операции, определённой в G.

Подгруппа кручения см. кручение.

Для произвольного подмножества S в G, <S> обозначает наименьшую подгруппу G, содержащую S.

Подгруппа Томпсона J(G) группы G — подгруппа, порождённая всеми абелевыми подгруппами максимального порядка из G.

Подгруппа Фиттинга F(G) группы G — подгруппа, порождённая всеми нильпотентными нормальными подгруппами из G.

Подгруппа Фраттини Φ(G) группы G — есть пересечение всех максимальных подгрупп группы G, если таковые существуют, и сама группа G в противном случае.

Полинильпотентная группа

Полупрямое произведение групп G и H над гомоморфизмом \phi: G \rightarrow \mbox{Aut}(H) (обозначается по разному, в том числе Gφ H) — множество G × H, наделенное операцией *, для которой (g1,h1) * (g2,h2) = (g1φ(h1)(g2),h1h2) для любых g_1,g_2 \in G, h_1,h_2 \in H.

Порядок группы (G,*) — мощность G (т.е. число её элементов).

Порядок элемента g группы G — минимальное натуральное число m такое, что gm = e. В случае, если такого m не существует, считается, что g имеет бесконечный порядок.

Простая группа — группа, в которой нет нормальных подгрупп, кроме тривиальной {e} и всей группы.

Примарная группа — группа, все элементы в которой имеют порядок, равный некоторой степени простого числа p (не обязательно одинаковой у всех элементов). Также говорят о p-группе.

Прямое произведение двух групп (G,·) и (H,•) есть множество G×H пар, наделённое операцией покомпонентного умножения: (g1,h1)(g2,h2) = (g1 · g2,h1h2).

[править] Р

Разрешимая группа — группа, обладающая нормальным рядом подгрупп с абелевыми факторами. Наименьшая из длин таких рядов называется её ступенью разрешимости.

Разрешимый радикал S(G) группы G — подгруппа, порождённая всеми разрешимыми нормальными подгруппами из G.

Ряд подгрупп. Конечная последовательность подгрупп, G0,G1,...,Gn называется рядом подгрупп, если G_i \leq G_{i+1}, для всех i\in\left\{0,...,n-1\right\},~G_0=1,~G_n=G. Такой ряд записывают в виде

1=G_0\leq G_1\leq ... \leq G_n=G

или в виде

G=G_n\geq G_{n-1}\geq ... \geq G_0=1

[править] С

Сверхразрешимая группа — группа, обладающая нормальным рядом подгрупп с циклическими факторами.

Свободная группа. Свободной группой, порождённой множеством A, называется группа, порождённая элементами этого множества и не имеющая никаких соотношений, кроме соотношений, определяющих группу. Все свободные группы, порождённые равномощными множествами, изоморфны.

Свободное произведение

Силовская подгруппаp-подгруппа в G, имеющая порядок pn, где | G | = pns, НОД(p,s) = 1.

Соотношение — тождество, которому удовлетворяют все образующие группы(при задании группы образующими и соотношениями).

Стабилизатор элемента p множества M, на котором действует группа G - подгруппа St_G(p) \subset G, все элементы которой оставляют p на месте: g\cdot p = p.

Субнормальный ряд подгруппряд подгрупп, в котором подгруппа Gi нормальна в подгруппе Gi + 1, для всех членов ряда.

[править] Ф

Факторгруппа группы G по нормальной подгруппе H есть множество классов смежности подгруппы H с умножением, определяемым следующим образом:

(aH) * (bH) = (ab)H.

Факторы субнормального рядафактор-группы Gi + 1 / Gi в определении субнормального ряда подгрупп.

[править] Х

Характеристическая подгруппа — подгруппа, инвариантная относительно всех автоморфизмов группы.

Холлова подгруппа — подгруппа, порядок которой взаимно прост с её индексом во всей группе.

[править] Ц

Центр группы G, обычно обозначается Z(G), определяется как

Z(G) = {g \in G | gh = hg для любого h \in G},

иначе говоря, это максимальная подгруппа элементов, коммутирующих с каждым элементом G.

Централизатор элемента есть максимальная подгруппа, коммутирующая с этим элементом.

Центральный ряд подгруппнормальный ряд подгрупп, в котором G_{i+1}/G_{i}\subseteq Z(G/G_{i}), для всех членов ряда.

Циклическая группа - группа, состоящая из порождающего элемента и всех его целых степеней. Конечна в случае, если порядок порождающего элемента конечен.

[править] Ш

[править] Э

Экспонента exp(G) конечной группы G — числовая характеристика группы, равная наименьшему общему кратному порядков всех элементов группы G.

[править] Я

Ядро гомоморфизма — прообраз нейтрального элемента при гомоморфизме. Ядро всегда есть нормальная подгруппа, более того, любая нормальная подгруппа есть ядро некоторого гомоморфизма.

 
На других языках
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu