Ebooks, Audobooks and Classical Music from Liber Liber
a b c d e f g h i j k l m n o p q r s t u v w x y z





Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Liczby naturalne - Wikipedia, wolna encyklopedia

Liczby naturalne

Z Wikipedii

Liczby naturalneliczby używane powszechnie do liczenia (na obiedzie były trzy osoby) i ustalania kolejności (był trzeci na liście). Pojęcie liczby jest jednym z najstarszych i najbardziej abstrakcyjnych pojęć jakie wytworzyła ludzkość, wydaje się jednak, że niewiedza na temat czym liczby są nie przeszkadza nam sprawnie się nimi posługiwać.

Badaniem własności liczb naturalnych zajmuje się teoria liczb, badaniem problemów związanych z liczeniem – arytmetyka.

W matematyce nie ma zgody co do tego czy liczby naturalne to 0, 1, 2, 3, ... czy też 1, 2, 3, ... Obie wersje posiadają ścisłe formalne definicje. Różni matematycy w zależności od wygody i przyzwyczajeń przyjmują jedną lub drugą przez co symbol \mathbb{N} jest dwuznaczny (może oznaczać \mathbb{N}=\mathbb{Z}_{+} lub \mathbb{N}=\mathbb{Z}_{+}\cup \{0\}). Czytając tekst matematyczny zawsze warto się upewnić jak rozumie go autor. Poniżej zaprezentowano definicję zaproponową przez Peano w wersji oryginalnej (zakładającej 0\in\mathbb{N}) jednak zmieniając pierwszy aksjomat łatwo otrzymać definicję wykluczającą zero (zakładającej 0\notin\mathbb{N}).

Spis treści

[edytuj] Historia

Do weryfikacji
Niektóre informacje zawarte w artykule wymagają weryfikacji.
Zajrzyj na stronę dyskusji, by dowiedzieć się odnośnie jakich informacji pojawiły się wątpliwości.


Liczby naturalne (bez zera) początkowo były stosowane wyłącznie do określania liczebności obiektów.

Pierwszy krok dla wyabstrahowania liczb naturalnych to stworzenie cyfr na określenie danych wartości liczb. Przykładowo w Babilonii stosowano cyfry o wartościach od 1 do 10, zaś o wartości liczby decydowała pozycja kolejnych cyfr w szeregu. W starożytnym Egipcie stosowano odpowiednie hieroglify o wartościach 1, 10 i kolejnych potęgach 10 aż do miliona.

Znacznie później pojawiło się zero jako oddzielna wartość. Już w siódmym wieku p.n.e. Babilończycy stosowali zero w zapisie pozycyjnym, ale nigdy nie występowało ono samodzielnie. W Cywilizacji Majów zero istniało jako liczba już w I w. p.n.e., ale Majowie nie rozprzestrzenili tej idei poza Amerykę Środkową. Współczesne pojęcie zera przypisuje się Hindusowi Brahmagupcie, który stworzył je w 628. Zero stosowano w średniowieczu, ale nie miało ono swojej reprezentacji w cyfrach rzymskich - stosowano łacińskie słowo nullae.

Pierwsze systematyczne, abstrakcyjne studia nad liczbami przypisuje się Greckim filozofom: Pitagorasowi i Archimedesowi. Poza Grecją niezależne rozważania prowadzono w rejonie Indii, Chin i Ameryki Środkowej.

Dopiero w XIX w. pojawiła się ścisła, teoriomnogościowa definicja zbioru liczb naturalnych. Zgodnie z nią, zero jako odpowiednik zbioru pustego jest najmniejszym elementem tego zbioru. Wielu matematyków, szczególnie w teorii liczb jednak wyłącza tę liczbę ze zbioru liczb naturalnych.

[edytuj] Określenie formalne

[edytuj] Postulaty Peano

Podanie ścisłej definicji zbioru liczb naturalnych nie było proste i zajęło matematykom wiele czasu. Giuseppe Peano zaproponował następujące warunki (tzw. postulaty lub aksjomaty Peano), które musi spełniać zdefiniowany zbiór liczb naturalnych, aby ta definicja była prawidłowa:

  • Istnieje liczba naturalna 0;
  • Każda liczba naturalna ma swój następnik, oznaczany S(a);
  • Zero nie jest następnikiem żadnej liczby naturalnej;
  • Różne liczby naturalne mają różne następniki: a \not = b \Rightarrow S(a) \not = S(b);
  • Jeśli zero ma daną własność i następnik dowolnej liczby naturalnej ma tę własność, to każda liczba naturalna ma tę własność (zasada indukcji matematycznej).

Ostatnia z własności oznacza, że każda liczba naturalna poza zerem jest następnikiem jakiejś liczby naturalnej.

Ten artykuł wymaga dopracowania.
Więcej informacji co należy poprawić, być może znajdziesz w dyskusji tego artykułu lub na odpowiedniej stronie. W pracy nad artykułem należy korzystać z zaleceń edycyjnych. Po naprawieniu wszystkich błędów można usunąć tę wiadomość.
Możesz także przejrzeć pełną listę stron wymagających dopracowania.

Okazuje się, że powyższe postulaty pozwalają wprowadzić arytmetykę. Dodawanie definiujemy jak operację spęłniającą następujace warunki:

  • a+0=a\;
  • a+S(b)=S(a)+b\;

To wystarczy do wyliczenia sumy liczb np. 2+2 (dwa oznacza skrótowy zapis liczby S(S(0))). kolejno otrzymujemy:

  • 2+2
  • 2+S(1) bo 2 jest następnikiem 1
  • S(2)+1 z definicji
  • 3+1 następnik 2 oznaczamy symbolem 3
  • 3+S(0) 1 jest następnikiem 0
  • S(3)+0=S(3) z definicji
  • S(3)=4 następnik 3 oznaczamy symbolem 4

Podobnie definiujemy mnożenie jako operację spełniającą warunki:

  • a*0=0
  • a*S(b)=(a*b)+a

Powyższe postulaty mówią jakie własności powinny mieć liczby naturalne. Pozostaje pytanie czy taki "twór" istnieje. Okazuje się, że przy założeniu aksjomatów teorii mnogości można skonstruować zbiór liczb naturalnych. Taką konstrukcję przedstawia poniższa

[edytuj] Konstrukcja von Neumanna

Jest to przykład możliwej konstrukcji zbioru liczb naturalnych, nie jedynej, ale jednej z ważniejszych. Tak skonstruowany zbiór oczywiście spełnia aksjomaty Peano. Amerykański matematyk John von Neumann zaproponował następujący sposób konstrukcji liczb naturalnych:

Niech X - zbiór induktywny.

Niech P = \{Y \subset X: Y - induktywny\}. \cap P to zbiór induktywny (dowód przy aksjomacie nieskończoności). Pokażmy, że jest to najmniejszy w sensie inkluzji zbiór induktywny.

Niech Z - zbiór induktywny. To \cap P \cap Z też jest zbiorem induktywnym, bo to przecięcie zbiorów induktywnych. \cap P \cap Z \subset \cap P (z własności iloczynu) \wedge \cap P \subset X. Skoro tak, to \cap P \cap Z \in P \Rightarrow \cap P \subset \cap P \cap Z \Rightarrow \cap P \subset Y - co kończy dowód.

Zbiór ten istotnie jest najmniejszy, jest więc jedyny. Nazwiemy go liczbami naturalnymi i oznaczymy przez \mathbb{N}.

Korzystając z faktu induktywności \mathbb{N}:

  • \empty \in \mathbb{N} - oznaczamy jako 0;
  • S(\empty) = \{\empty\} - oznaczamy jako 1;
  • S(\{\empty\}) = \{\empty ,\{\empty\}\} - oznaczamy jako 2;

i tak dalej.

W teorii mnogości na każdą liczbę naturalną patrzymy jak na zbiór zawierający wszystkie poprzednie liczby naturalne, np. 2 = {0,1}, 5 = {0,1,2,3,4} itp.

[edytuj] Podstawowe własności

Dla wszystkich liczb naturalnych:

  • jeśli m < n to m <= n;
  • ~(n < n);
  • jeśli m <= n i ~(m = n) to m < n;
  • jeśli S(m) = S(n) to m = n;
  • jeśli n <= k <= S(n) to k=n lub k=S(n)
  • m <= n lub n <= m (porządek);
  • m = n lub n < m lub m < n.

Liczby naturalne są szczególnym przypadkiem:

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com