Privacy Policy Cookie Policy Terms and Conditions Poker probability (Omaha) - Wikipedia, the free encyclopedia

Poker probability (Omaha)

From Wikipedia, the free encyclopedia

In poker, the probability of many events can be determined by direct calculation. This article discusses how to compute the probabilities for many commonly occurring events in the game of Omaha hold 'em and provides some probabilities and odds[note 1] for specific situations. In most cases, the probabilities and odds are approximations due to rounding.

When calculating probabilities for a card game such as Omaha, there are two basic approaches.

  1. Determine the number of outcomes that satisfy the condition being evaluated and divide this by the total number of possible outcomes.
  2. Use conditional probabilities, or in more complex situations, a decision graph.

Often, the key to determining probability is selecting the best approach for a given problem. This article uses both of these approaches, but relies primarily on enumeration.

Contents

[edit] Starting hands

The probability of being dealt various starting hands can be explicitly calculated. In Omaha, a player is dealt four down (or hole) cards. The first card can be any one of 52 playing cards in the deck; the second card can be any one of the 51 remaining cards; the third and fourth any of the 50 and 49 remaining cards, respectively. There are 4! = 24 ways (4! is read "four factorial") to order the four cards (ABCD, ABDC, ACBD, ACDB, ...) which gives 52 × 51 × 50 × 49 ÷ 24 = 270,725 possible starting hand combinations. Alternatively, the number of possible starting hands is represented as the binomial coefficient

{52 \choose 4} = 270,725

which is the number of possible combinations of choosing 4 cards from a deck of 52 playing cards.

The 270,725 starting hands can be reduced for purposes of determining the probability of starting hands for Omaha—since suits have no relative value in poker, many of these hands are identical in value before the flop. The only factors determining the strength of a starting hand are the ranks of the cards and whether cards in the hand share the same suit. Of the 270,725 combinations, there are 16,432 distinct starting hands grouped into 16 shapes. Throughout this article, hand shape is indicated with the ranks denoted using uppercase letters and suits denoted using lower case letters. For example, the hand shape XaXbYaYc is any hand containing two pair (XX and YY) that share one suit (a), but not the other suits (b and c). The 16 hand shapes can be organized into the following five hand types based on the ranks of the cards.

Rank type Shapes Distinct hands Combos Probability Odds
XXXX: Four of a kind 1 13 13 0.0000480 20,824 : 1
XXXY: Three of a kind 2 312 2,496 0.00922 107 : 1
XXYY: Two pair 3 234 2,808 0.0104 95.4 : 1
XXYZ: One pair 5 5,148 82,368 0.304 2.29 : 1
XYZR: No pair 5 10,725 183,040 0.676 0.479 : 1
TOTAL 16 16,432 270,725 1.0 0 : 1

There are also five types of hands based on the suits of the cards that mirror the five rank types: aaaa, aaab, aabb, aabc, and abcd. The following are the probabilities and odds of being dealt each suit type.

Suit type Shapes Distinct hands Combos Probability Odds
aaaa 1 715 2,860 0.0106 93.7 : 1
aaab 2 3,718 44,616 0.165 5.07 : 1
aabb 3 3,081 36,504 0.135 6.42 : 1
aabc 5 7,098 158,184 0.584 0.711 : 1
abcd 5 1,820 28,561 0.105 8.48 : 1
TOTAL 16 16,432 270,725 1.0 0 : 1

Unlike the rank types, the suit types can be absolutely ranked in terms of starting hand value because suits in poker hands only factor in flushes and straight flushes. From best to worst starting hand value the suit types are: aabb, aabc, aaab, aaaa, and abcd.

The relative probability of being dealt a hand of each given shape is different. The following shows the probabilities and odds of being dealt each shape of starting hand.

Rank type Hand shape Distinct hands Suits for each hand Hand
combos
Dealt specific hand Dealt any hand
Derivation Number Derivation Combos Probability Odds Probability Odds
Four of a kind XaXbXcXd \begin{matrix} {13 \choose 1} \end{matrix} 13 \begin{matrix} {4 \choose 4} \end{matrix} 1 13 0.00000369 270,724 : 1 0.0000480 20,824 : 1
Three of a kind XaXbXcYa \begin{matrix} {13 \choose 1}{12 \choose 1} \end{matrix} 156 \begin{matrix} {4 \choose 3}{3 \choose 1} \end{matrix} 12 1,872 0.0000443 22,559 : 1 0.00691 144 : 1
XaXbXcYd \begin{matrix} {13 \choose 1}{12 \choose 1} \end{matrix} 156 \begin{matrix} {4 \choose 3} \end{matrix} 4 624 0.0000148 67,680 : 1 0.00230 433 : 1
Two pair XaXbYaYb \begin{matrix} {13 \choose 2} \end{matrix} 78 \begin{matrix} {4 \choose 2} \end{matrix} 6 468 0.0000222 45,120 : 1 0.00173 577 : 1
XaXbYaYc \begin{matrix} {13 \choose 2} \end{matrix} 78 \begin{matrix} {4 \choose 2}{2 \choose 1}^2 \end{matrix} 24 1,872 0.0000887 11,279 : 1 0.00691 144 : 1
XaXbYcYd \begin{matrix} {13 \choose 2} \end{matrix} 78 \begin{matrix} {4 \choose 2} \end{matrix} 6 468 0.0000222 45,120 : 1 0.00173 577 : 1
One pair XaXbYaZa \begin{matrix} {13 \choose 1}{12 \choose 2} \end{matrix} 858 \begin{matrix} {4 \choose 2}{2 \choose 1} \end{matrix} 12 10,296 0.0000443 22,559 : 1 0.0380 25.3 : 1
XaXbYaZb \begin{matrix} {13 \choose 1}{12 \choose 2} \end{matrix} 858 \begin{matrix} {4 \choose 2}{2 \choose 1} \end{matrix} 12 10,296 0.0000443 22,559 : 1 0.0380 25.3 : 1
XaXbYaZc \begin{matrix} {13 \choose 1}{12 \choose 2}{2 \choose 1} \end{matrix} 1,716 \begin{matrix} {4 \choose 2}{2 \choose 1}^2 \end{matrix} 24 41,184 0.0000887 11,279 : 1 0.152 5.57 : 1
XaXbYcZc \begin{matrix} {13 \choose 1}{12 \choose 2} \end{matrix} 858 \begin{matrix} {4 \choose 2}{2 \choose 1} \end{matrix} 12 10,296 0.0000443 22,559 : 1 0.0380 25.3 : 1
XaXbYcZd \begin{matrix} {13 \choose 1}{12 \choose 2} \end{matrix} 858 \begin{matrix} {4 \choose 2} \times 2! \end{matrix} 12 10,296 0.0000443 22,559 : 1 0.0380 25.3 : 1
No pair XaYaZaRa \begin{matrix} {13 \choose 4} \end{matrix} 715 \begin{matrix} {4 \choose 1} \end{matrix} 4 2,860 0.0000148 67,680 : 1 0.0106 93.7 : 1
XaYaZaRb \begin{matrix} {13 \choose 4}{4 \choose 3} \end{matrix} 2,860 \begin{matrix} {4 \choose 1}{3 \choose 1} \end{matrix} 12 34,320 0.0000443 22,559 : 1 0.127 6.89 : 1
XaYaZbRb \begin{matrix} {13 \choose 4}{4 \choose 2} \div 2 \end{matrix} 2,145 \begin{matrix} {4 \choose 2}{2 \choose 1} \end{matrix} 12 25,740 0.0000443 22,559 : 1 0.0951 9.52 : 1
XaYaZbRc \begin{matrix} {13 \choose 4}{4 \choose 2} \end{matrix} 4,290 \begin{matrix} {4 \choose 1}{3 \choose 2} \times 2! \end{matrix} 24 102,960 0.0000887 11,279 : 1 0.380 1.63 : 1
XaYbZcRd \begin{matrix} {13 \choose 4} \end{matrix} 715 \begin{matrix} 4! \end{matrix} 24 17,160 0.0000148 67,680 : 1 0.0634 14.8 : 1

[edit] Starting hands for straights

In addition to the rank type and suit type of a starting hand, each starting hand also has a sequence type that is useful for estimating the possibility of improving to a straight or straight flush. The sequence type is based on the sequential proximity of the ranks in the hand—the number of different ranks in the hand that can be combined to fill a straight on the board. The ace is a special case in the sequence type because it can be either high or low (i.e. can make a straight with A-2-3-4-5 or T-J-Q-K-A), and is also both the high and low card in the rank sequence from which straights are formed: A-2-3-4-5-6-7-8-9-T-J-Q-K-A.

The sequence type of the hand is only relevant in determining the probability of making a straight or straight flush. In order to make a straight, exactly three community cards must be combined with exactly two cards from the starting hand. Thus the sequence shape of a hand is the number of different combinations of three cards that can make a straight when combined with two cards from the hand. There are 20 different sequence shapes ranging from hands like 2-2-8-K that can't make a straight (0 straight combinations) to hands like 8-9-T-J that can make a straight with 20 different combinations of three ranks (5-6-7, 6-7-8, 6-7-9, 6-7-T, 7-8-9, 7-8-T, 7-8-J, 7-9-T, 7-9-J, 7-T-J, 8-9-Q, 8-T-Q, 8-J-Q, 9-T-Q, 9-J-Q, 9-Q-K, T-J-Q, T-Q-K, J-Q-K, Q-K-A). The 20 sequence shapes can be organized by the number of ranks in the starting hand. This is similar to the rank type of the hand, the only difference being that both the rank types two pair (XXYY) and three of a kind (XXXY) have two ranks. The following table shows the four sequence types based on the number of distinct ranks in the starting hand.

Distinct ranks Shapes Distinct hands Combos Probability Odds
1 1 13 13 0.0000480 20,824 : 1
2 5 546 5,304 0.0196 50.0 : 1
3 12 5,148 82,368 0.304 2.29 : 1
4 18 10,725 183,040 0.676 0.479 : 1
TOTAL 36 16,432 270,725 1.0 0 : 1

Note that the table above shows 36 sequence shapes because although there are only 20 different sequence shapes, the sequence shapes overlap with the sequence types. For example, the sequence shape where two different combinations of three cards can make a straight occurs for hands with two ranks (e.g. 3-6 makes a straight with 2-4-5 or 4-5-7), three ranks (e.g. 2-J-A makes a straight with T-Q-K or 3-4-5), and four ranks (e.g. 3-9-K-A makes a straight with 2-4-5 or T-J-Q).

The relative probability of being dealt a hand of each sequence shape is different. The following shows the probabilities and odds of being dealt starting hands of each sequence shape.

Sequence
shape
Distinct hands by ranks in hand Distinct
hands
Combos by ranks in hand Total
combos
Probability Odds
1 rank 2 ranks 3 ranks 4 ranks 1 rank 2 ranks 3 ranks 4 ranks
0 13 224 72   309 13 2,176 1,152   3,341 0.01234 80.03 : 1
1   112 468   580   1,088 7,488   8,576 0.03168 30.57 : 1
2   91 1,314 240 1,645   884 21,024 4,096 26,004 0.09605 9.41 : 1
3   70 972 480 1,522   680 15,552 8,192 24,424 0.09022 10.08 : 1
4   49 1,278 1,290 2,617   476 20,448 22,016 42,940 0.15861 5.30 : 1
5     108 1,980 2,088     1,728 33,792 35,520 0.13120 6.62 : 1
6     108 1,380 1,488     1,728 23,552 25,280 0.09338 9.71 : 1
7     396 1,320 1,716     6,336 22,528 28,864 0.10662 8.38 : 1
8     72 885 957     1,152 15,104 16,256 0.06005 15.65 : 1
9     216 870 1,086     3,456 14,848 18,304 0.06761 13.79 : 1
10     36 660 696     576 11,264 11,840 0.04373 21.87 : 1
11     108 720 828     1,728 12,288 14,016 0.05177 18.32 : 1
12       375 375       6,400 6,400 0.02364 41.30 : 1
13       60 60       1,024 1,024 0.00378 263.38 : 1
14       30 30       512 512 0.00189 527.76 : 1
15       30 30       512 512 0.00189 527.76 : 1
16       150 150       2,560 2,560 0.00946 104.75 : 1
17       150 150       2,560 2,560 0.00946 104.75 : 1
19       30 30       512 512 0.00189 527.76 : 1
20       75 75       1,280 1,280 0.00473 210.50 : 1
TOTAL 13 546 5,148 10,725 16,432 13 5,304 82,368 183,040 270,725 1.0 0 : 1

As the table indicates, there is a 98.8% chance that a starting hand will have at least one straight draw, but only a 3.3% chance that it will have more than 12 ways to make a straight.

[edit] Starting hands for straight flushes

The set of starting hands that can make a straight flush are a subset of the intersection of the set of hands that can make a straight and the set of hands that can make a flush. The hands that can make a straight flush can be organized similar to the parent superset of hands that can make a straight.

The straight flush sequence shape of a hand is the number of different combinations of three cards that can make a straight flush when combined with two cards from the hand. There are 9 different straight flush sequence shapes ranging from hands that can't make a straight flush to hands like 8♥ 9♥ 8♠ 9♠ that can make a straight flush with 8 different combinations of three ranks ({5♥ 6♥ 7♥}, {6♥ 7♥ 10♥}, {7♥ 10♥ J♥}, {10♥ J♥ Q♥}, {5♠ 6♠ 7♠}, {6♠ 7♠ 10♠}, {7♠ 10♠ J♠}, {10♠ J♠ Q♠}).

As with straights, the relative probability of being dealt a hand of each straight flush sequence shape is different. The following shows the probabilities and odds of being dealt starting hands of each straight flush sequence shape.

Straight flush
sequence shape
Distinct hands by ranks in hand Distinct
hands
Combos by ranks in hand Total
combos
Probability Odds
1 rank 2 ranks 3 ranks 4 ranks 1 rank 2 ranks 3 ranks 4 ranks
0 13 362 2,060 2,877 5,312 13 2,820 33,168 64,224 100,225 0.37021 1.70 : 1
1   48 794 1,686 2,528   768 13,752 30,264 44,784 0.16542 5.05 : 1
2   55 870 2,113 3,038   720 13,872 32,768 47,360 0.17494 4.72 : 1
3   30 690 1,782 2,502   480 10,920 26,960 38,360 0.14169 6.06 : 1
4   34 594 1,730 2,358   414 8,976 24,044 33,434 0.12350 7.10 : 1
5     68 300 368     816 2,592 3,408 0.01259 78.44 : 1
6   10 38 165 213   60 456 1,444 1,960 0.00724 137.13 : 1
7     28 56 84     336 560 896 0.00331 301.15 : 1
8   7 6 16 29   42 72 184 298 0.00110 907.47 : 1
TOTAL 13 546 5,148 10,725 16,432 13 5,304 82,368 183,040 270,725 1.0 0 : 1

[edit] Low starting hands

Omaha Hi-Low is a high-low split variant where the best qualifying low hand, if any, splits the pot with the high hand. Different cards can be used to form the high and low hands, each using two cards from the player's hand and three from the board, and a single player can win both the high and low pots. In Omaha/8, the most common form played in American casinos, a qualifying low hand is 8-high or lower (8-7-6-5-4 or lower). A less common variant of Omaha Hi-Lo uses a qualifying low hand of 9-high or lower (9-8-7-6-5 or lower).

Suits and cards higher than the maximum qualifying low hand do not factor into low hands and neither do straights and flushes. Based on the ranks of cards, low starting hands in Omaha Hi-Lo are grouped into 12 different low-hand shapes, seven of which have the possibility of making a qualifying low hand. The low hand shapes can be organized by the number of distinct low card ranks in the hand: 0 or 1 low ranks (no low hand possible), 2 low ranks, 3 low ranks and 4 low ranks. The number of distinct low hands depends on the low-hand qualifier.

Low ranks Shapes 8-high qualifier 9-high qualifier
Distinct hands Combos Probability Odds Distinct hands Combos Probability Odds
0–1 5 33 51,093 0.189 4.30 : 1 37 29,045 0.107 8.32 : 1
2 4 168 113,904 0.421 1.38 : 1 216 99,216 0.366 1.73 : 1
3 2 224 87,808 0.324 2.08 : 1 336 110,208 0.407 1.46 : 1
4 1 70 17,920 0.0662 14.1 : 1 126 32,256 0.119 7.39 : 1
TOTAL 12 495 270,725 1.0 0 : 1 715 270,725 1.0 0 : 1

The preceeding table shows that with an 8-high low qualifier, a random hand has an 81.1% chance of having at least two low card ranks to make a low hand possible, and that with a 9-high low qualifier the chance increases to 89.3%.

If r represents the low hand qualifier (8 or 9), there are \begin{matrix} (13 - r) \times 4 = 52 - 4r \end{matrix} cards with a rank higher than the low hand qualifier (20 high cards in 8-high, 16 in 9-high). Using * to represent any high card and lower case letters to represent low card ranks, the following gives the probability of being dealt the various low hand shapes.

Low
shape
Derivations 8-high qualifier (r = 8) 9-high qualifier (r = 9)
Distinct
hands
High card & low suit
combinations
Distinct
hands
Hand
combos
Dealt specific hand Dealt any hand Distinct
hands
Hand
combos
Dealt specific hand Dealt any hand
Probability Odds Probability Odds Probability Odds Probability Odds
**** \begin{matrix}{r \choose 0}\end{matrix} \begin{matrix}{52 - 4r \choose 4}\end{matrix} 1 4,845 0.0179 54.9 : 1 0.0179 54.9 : 1 1 1,820 0.00672 148 : 1 0.00672 148 : 1
x*** \begin{matrix}{r \choose 1}\end{matrix} \begin{matrix}{4 \choose 1}{52 - 4r \choose 3}\end{matrix} 8 36,480 0.0168 58.4 : 1 0.135 6.42 : 1 9 20,160 0.00827 120 : 1 0.0745 12.4 : 1
xx** \begin{matrix}{r \choose 1}\end{matrix} \begin{matrix}{4 \choose 2}{52 - 4r \choose 2}\end{matrix} 8 9,120 0.00421 236 : 1 0.0337 28.7 : 1 9 6,480 0.00266 375 : 1 0.0239 40.8 : 1
xxx* \begin{matrix}{r \choose 1}\end{matrix} \begin{matrix}{4 \choose 3}{52 - 4r \choose 1}\end{matrix} 8 640 0.000296 3,383 : 1 0.00236 422 : 1 9 576 0.000236 4,229 : 1 0.00213 469 : 1
xxxx \begin{matrix}{r \choose 1}\end{matrix} \begin{matrix}{4 \choose 4}\end{matrix} 8 8 0.00000369 270,724 : 1 0.0000296 33,839 : 1 9 9 0.00000369 270,724 : 1 0.0000332 30,080 : 1
xy** \begin{matrix}{r \choose 2}\end{matrix} \begin{matrix}{4 \choose 1}^2{52 - 4r \choose 2}\end{matrix} 28 85,120 0.0112 88.1 : 1 0.314 2.18 : 1 36 69,120 0.00709 140 : 1 0.255 2.92 : 1
xxy* \begin{matrix}{r \choose 1}{r - 1 \choose 1}\end{matrix} \begin{matrix}{4 \choose 2}{4 \choose 1}{52 - 4r \choose 1}\end{matrix} 56 26,880 0.00177 563 : 1 0.0993 9.07 : 1 72 27,648 0.00142 704 : 1 0.102 8.79 : 1
xxxy \begin{matrix}{r \choose 1}{r - 1 \choose 1}\end{matrix} \begin{matrix}{4 \choose 3}{4 \choose 1}\end{matrix} 56 896 0.0000591 16,919 : 1 0.00331 301 : 1 72 1,152 0.0000591 16,919 : 1 0.00426 234 : 1
xxyy \begin{matrix}{r \choose 2}\end{matrix} \begin{matrix}{4 \choose 2}^2\end{matrix} 28 1,008 0.000133 7,519 : 1 0.00372 267 : 1 36 1,296 0.000133 7,519 : 1 0.00479 208 : 1
xyz* \begin{matrix}{r \choose 3}\end{matrix} \begin{matrix}{4 \choose 1}^3{52 - 4r \choose 1}\end{matrix} 56 71,680 0.00473 211 : 1 0.265 2.78 : 1 84 86,016 0.00378 263 : 1 0.318 2.15 : 1
xxyz \begin{matrix}{r \choose 1}{r - 1 \choose 2}\end{matrix} \begin{matrix}{4 \choose 2}{4 \choose 1}^2\end{matrix} 168 16,128 0.000355 2,819 : 1 0.0596 15.8 : 1 252 24,192 0.000355 2,819 : 1 0.0894 10.2 : 1
xyzr \begin{matrix}{r \choose 4}\end{matrix} \begin{matrix}{4 \choose 1}^4\end{matrix} 70 17,920 0.000946 1,057 : 1 0.0662 14.1 : 1 126 32,256 0.000946 1,057 : 1 0.119 7.39 : 1

The probability of making a low hand depends on the number of low card ranks in the hand. However, although both are important, the probability of having the lowest hand depends more on the ranks of the low cards than on the number of low cards.

[edit] Hand selection

Beginning hand selection is critical in Omaha. Exactly two hole cards are combined with three community cards to form a hand in Omaha. The most favorable hand shapes have two suits with two cards in each suit, giving the hand two flush draws; have card ranks that are consecutive, giving the hand straight possibilities; and have one or more pairs, giving the hand a pair, and draws to three of a kind, full house and four of a kind possibilities. This makes the hands with the shape XaXbYaYb, with the ranks of X and Y adjacent, great starting hands in Omaha. AaAbKaKb is the strongest starting hand in Omaha, while in Omaha Hi-Low the best starting hand is AaAb2a3b, which gives A-2-3 for making a low hand and straights, two suited aces for nut flushes, and a pair of aces for high. The best low starting hand is A-2-3-4, which makes the nut low hand the vast majority of the time when a qualifying low hand is possible.

Contrary to most poker variants, more is not necessarily better (or the same) in Omaha, because only two hole cards are used. Because of this limitation, hands with more than two of the same suit or more than two of the same rank are weaker than the hand would be with exactly two of the suit or rank. The extra cards of the same suit remove outs for the flush draw and the extra cards of the same rank remove valuable outs for three of a kind, a full house, and four of a kind. The suit type aaaa is only about half as likely to make a flush as aabc. Paradoxically, the worst hand in Omaha hold 'em is four of a kind deuces (twos), because this hand can only make a pair of deuces plus the community cards. A much more common poor starting hand has the shape XaYbZcRd with the ranks of the cards spaced, such as 2♥ 6♦ 9♣ K♠—this hand has no flush draw, limited straight possibilities, and no pairs, although it has many more possibilities than 2-2-2-2 and considerably more than 2♥ 2♦ 2♣ 9♠.

Some professional poker players have created point systems for evaluating starting hands in Omaha, with the decision to raise, fold or call based on the number of points assigned to the starting hand.[1][2] However, because of the necessary simplifications point systems make, there is disagreement regarding the value of particular point systems and point systems in general.[3]

[edit] The flop

There are

{52 \choose 3} = 22,100

possible flops assuming a random starting hand. By the turn the total number of combinations has increased to

{52 \choose 4} = 270,725

and on the river there are

{52 \choose 5} = 2,598,960

possible boards. For a given starting hand there are four known cards, which leaves

{48 \choose 3} = 17,296

possible flops. At the turn the number of combinations is

{48 \choose 4} = 194,580

and on the river there are

{48 \choose 5} = 1,712,304

possible boards to go with the hand.

An Omaha poker hand consists of two cards from the player's hand and three cards from the board. Therefore, there are

{3 \choose 3}{4 \choose 2} = 6

ways to form a poker hand from a starting hand after the flop and

{4 \choose 3}{4 \choose 2} = 24  and  {5 \choose 3}{4 \choose 2} = 60

ways at the turn and river, respectively. By contrast, in Texas hold 'em there are only \begin{matrix}{5 \choose 5} = 1\end{matrix}, \begin{matrix}{6 \choose 5} = 6\end{matrix} and \begin{matrix}{7 \choose 5} = 21\end{matrix} ways to form a poker hand on the flop, turn and river, respectively. This increase in opportunities to make a hand means that the average strength of the winning hand in Omaha is higher than in Texas hold' em and other 7-card poker variants.

[edit] Making a low hand

See the section "Low starting hands" for a description of low hands in Omaha.

The first question regarding making a low hand in Omaha Hi-Lo is "how often does a qualifying low hand occur?" In order for any hand to qualify for low, the community cards must include at least three cards to a qualifying low hand. If r is the maximum rank (8 or 9) of a qualifying low hand, then assuming random starting hands, the probability Pf of the flop containing three cards to a qualifying low hand is

P_f = \frac{{r \choose 3}{4 \choose 1}^3}{{52 \choose 3}}.

Three ranks from the available low ranks are choosen and each rank can have one of four suits. There are \begin{matrix}{8 \choose 3} = 56\end{matrix} and \begin{matrix}{9 \choose 3} = 84\end{matrix} ways to choose three low ranks. The number of hands that can make a qualifying low are divided by the \begin{matrix}{52 \choose 3} = 22,100\end{matrix} possible flops. This gives the following low hand combinations and probabilities on the flop.

Making low on flop for 8-high (r = 8) for 9-high (r = 9)
Combos Probability Odds Combos Probability Odds
three low ranks \begin{matrix} {r \choose 3}{4 \choose 1}^3 \end{matrix} 3,584 0.1622 5.116 : 1 5,376 0.2433 3.111 : 1

Calculating the probability of three low ranks on the board for the turn and river is slightly more complicated because there are multiple possibilities for the fourth card. By the turn a qualifying low is possible with either four low ranks, three low ranks and a pair, or three low ranks and a high card. The probability Pt of making at least three cards to a qualifying low hand by the turn is the sum of the probabilities for each of these configurations. Each probability is calculated by dividing the number of combinations that satisfy the conditions by the \begin{matrix}{52 \choose 4} = 270,725\end{matrix} possible boards on the turn.

Making low by turn for 8-high (r = 8) for 9-high (r = 9)
Combos Probability Odds Combos Probability Odds
four low ranks \begin{matrix} {r \choose 4}{4 \choose 1}^4 \end{matrix} 17,920 0.06619 14.11 : 1 32,256 0.1191 7.393 : 1
three low ranks + a pair \begin{matrix} {r \choose 1}{4 \choose 2}{r - 1 \choose 2}{4 \choose 1}^2 \end{matrix} 16,128 0.05957 15.79 : 1 24,192 0.08936 10.19 : 1
three low ranks + high card \begin{matrix} {r \choose 3}{4 \choose 1}^3{52 - 4r \choose 1} \end{matrix} 71,680 0.2648 2.777 : 1 86,016 0.3177 2.147 : 1
Pt 105,728 0.3905 1.561 : 1 142,464 0.5262 0.9003 : 1

Finally, at the river there are seven ways to make at least three cards to a low hand and \begin{matrix}{52 \choose 5} = 2,598,960\end{matrix} possible boards on the river, giving the following probability for Pr.

Making low by river for 8-high (r = 8) for 9-high (r = 9)
Combos Probability Odds Combos Probability Odds
five low ranks \begin{matrix} {r \choose 5}{4 \choose 1}^5 \end{matrix} 57,344 0.02206 44.32 : 1 129,024 0.04964 19.14 : 1
four low ranks + a pair \begin{matrix} {r \choose 1}{4 \choose 2}{r - 1 \choose 3}{4 \choose 1}^3 \end{matrix} 107,520 0.04137 23.17 : 1 193,536 0.07447 12.43 : 1
four low ranks + high card \begin{matrix} {r \choose 4}{4 \choose 1}^4{52 - 4r \choose 1} \end{matrix} 358,400 0.1379 6.252 : 1 516,096 0.1986 4.036 : 1
three low ranks + three of a kind \begin{matrix} {r \choose 1}{4 \choose 3}{r - 1 \choose 2}{4 \choose 1}^2 \end{matrix} 10,752 0.004137 240.7 : 1 16,128 0.006206 160.1 : 1
three low ranks + two pair \begin{matrix} {r \choose 2}{4 \choose 2}^2{r - 2 \choose 1}{4 \choose 1} \end{matrix} 24,192 0.009308 106.4 : 1 36,288 0.01396 70.62 : 1
three low ranks + a pair + high card \begin{matrix} {r \choose 1}{4 \choose 2}{r - 1 \choose 2}{4 \choose 1}^2{52 - 4r \choose 1} \end{matrix} 322,560 0.1241 7.057 : 1 387,072 0.1489 5.714 : 1
three low ranks + two high cards \begin{matrix} {r \choose 3}{4 \choose 1}^3{52 - 4r \choose 2} \end{matrix} 680,960 0.2620 2.817 : 1 645,120 0.2482 3.029 : 1
Pr 1,561,728 0.6009 0.6642 : 1 1,923,264 0.7400 0.3513 : 1

As the last table indicates, there is a 60% chance that a low hand is possible at the river with an 8-high qualifying hand, and a 74% chance with a 9-high qualifier. The actually probability that there will be a qualifying low hand is less because there is a very real possibility that even with three cards to a low hand on the board, no player remaining in the hand at showdown can make a qualifying low hand.

[edit] Making the nuts

The nuts is the best possible poker hand that can be made from the community cards. Due to the large number of opportunities to make a hand, it is not uncommon in Omaha for the winning hand to be the nuts, or at least close to it. In the case of high hands, when the nuts is a royal flush or straight flush, the winning hand is often a flush; when the nuts is four of a kind, the winning hand is often a full house. The lowest hand that can be the nuts is three of a kind, which occurs when there is no straight or flush possible and no pair on the board. The lowest possible nut hand at the river is Q-Q-Q-8-7 which occurs when the board is one of the 600 possible combinations of Q-8-7-3-2 that doesn't have three or more of the same suit.

On the flop every poker hand uses the three community cards plus two other cards. For each board then, there are \begin{matrix} {49 \choose 2} = 1,176 \end{matrix} ways to make a poker hand and

{52 \choose 3}{3 \choose 3}{49 \choose 2} = 25,989,600

different possible combinations of poker hands made from the three community cards and two cards from a player's hand. On the turn there are \begin{matrix} {4 \choose 3} = 4 \end{matrix} ways to select three community cards and \begin{matrix} {48 \choose 2} = 1,128 \end{matrix} hand combinations giving 4 × 1,128 = 4,512 ways to make a poker hand for each board. This gives

{52 \choose 4}{4 \choose 3}{48 \choose 2} = 1,221,511,200

combinations of hands on the turn. Finally, on the river there are \begin{matrix} {5 \choose 3} = 10 \end{matrix} ways to select three community cards and \begin{matrix} {47 \choose 2} = 1,081 \end{matrix} hand combinations giving 10,810 ways to make a poker hand for each board, resulting in

{52 \choose 5}{5 \choose 3}{47 \choose 2} = 28,094,757,600

poker hand combinations possible on the river. For each board, one or more of the possible poker hands is the nuts.

The following table shows the probability of the nut hand for the board on the flop, turn and river.

Poker hand After the flop After the turn After the river
Combos Probability Odds Combos Probability Odds Combos Probability Odds
Royal flush 40 0.0018 551.5 : 1 1,880 0.0069 143.0 : 1 43,240 0.0166 59.11 : 1
Straight flush 216 0.0098 101.3 : 1 9,832 0.0363 26.54 : 1 218,680 0.0841 10.88 : 1
Four of a kind 3,796 0.1718 4.822 : 1 85,368 0.3153 2.171 : 1 1,173,696 0.4516 1.214 : 1
Full house 0 0 13 < 0.0001 20,824 : 1 624 0.0002 4164 : 1
Flush 888 0.0402 23.89 : 1 27,772 0.1026 8.748 : 1 390,520 0.1503 5.655 : 1
Straight 3,840 0.1738 4.755 : 1 88,128 0.3255 2.072 : 1 724,800 0.2789 2.586 : 1
Three of a kind 13,320 0.6027 0.6592 : 1 57,732 0.2132 3.689 : 1 47,400 0.0182 53.83 : 1
TOTAL 22,100 1 0 : 1 270,725 1 0 : 1 2,598,960 1 0 : 1

Notice that while three of a kind is a 60% favorite to be the nuts after the flop, it's less than 2% to still be on top at the river—although the three of a kind has a good chance of improving to a full house or four of a kind, if it doesn't improve, chances are the nut hand at the river is a straight, flush or straight flush. At the river, having the nuts be four of a kind is more likely (45.2%) than all of the hands ranked below four of a kind combined (44.8%). Also, despite the rarity of straight flushes and royal flushs at showdown, 10% of the boards will have one as the nut hand by the river.

[edit] Derivation of the nut boards

A royal flush is possible whenever the board contains exactly three cards from 10 to A of the same suit. For the flop there are

{5 \choose 3}{4 \choose 1} = 40

combinations. At the turn and river the three cards to a royal flush can be combined with any of the 47 remaining cards that aren't part of the royal flush, giving

{5 \choose 3}{4 \choose 1}{47 \choose 1} = 1,880  and  {5 \choose 3}{4 \choose 1}{47 \choose 2} = 43,240

combinations, respectively.

A straight flush is possible whenever the board contains at least three cards of the same suit where the ranks of the suited cards can create a straight with the addition of exactly two ranks. For three ranks, the two lower ranks must be chosen from the up to four next lower ranks, counting the rank of ace as low when trying to make the striaght A-2-3-4-5. There are 10 possible straights (Ace high to 5 high). A straight is also possible when the high rank is 4 combined with two of the three lower ranks A to 3, or when the three ranks are 3-2-A, which gives \begin{matrix} 10 \times {4 \choose 2} + {3 \choose 2} + {2 \choose 2} = 64 \end{matrix} ways. The royal flushes have already been accounted for and are subtracted from the straight flush combinations. This gives

64 \times {4 \choose 1} - 40 = 216

combinations for a straight flush after the flop. With four or five cards of different ranks, the determination of the number of rank sets that yeild a straight with the addition of exactly two cards is more involved because any enumeration must eliminate rank sets that are counted more than once, but it turns out that there are 432 such ranks sets with four ranks and 1,208 with five ranks.[4] At the turn there are two ways to make a straight flush—there can either be four cards of the same suit with a rank set that allows a straight, or three cards of the same suit that allow a straight combined with any of the 39 cards with a different suit. This gives

432 \times {4 \choose 1} + 64 \times {4 \choose 1}{39 \choose 1} - 1,880 = 9,832

combinations after the turn. At the river a straight flush is possible with a suited rank set of either five cards, four cards combined with one of the 39 cards of another suit, or three cards combined with two of the remaining 39 cards, giving

1,208 \times {4 \choose 1} + 432 \times {4 \choose 1}{39 \choose 1} + 64 \times {4 \choose 1}{39 \choose 2} - 43,240 = 218,680

combinations.

Four of a kind is the nuts whenever there is a pair or three of a kind on the board and no possibility for a straight flush. After the flop, three of a kind is possible by choosing one of the 13 ranks and three of the four cards in that rank; a pair is possible by choosing one of the 13 ranks and two of the four cards in that rank combined with a card in one of the other 12 ranks in any of the four suits. So on the flop there are

{13 \choose 1}{4 \choose 3} + {13 \choose 1}{4 \choose 2}{12 \choose 1}{4 \choose 1} = 3,796

boards with a pair or three of a kind. At the turn there can either be three of a kind and another rank, two pair, or one pair and two other ranks. In the case with one pair, any straight flushes made possible by the three different ranks must be subtracted. At the turn, the number of possible straight flushes with a pair on the board is one of the 64 ranks sets with three cards that can make a straight in one of the four suits combined with a card that pairs one of the three cards to the straight flush, which is \begin{matrix} 64 \times {4 \choose 1}{3 \choose 1}{3 \choose 1} = 2,304\end{matrix}. So there are

{13 \choose 1}{4 \choose 3}{12 \choose 1}{4 \choose 1} +        {13 \choose 2}{4 \choose 2}^2 +        \left [ {13 \choose 2}{4 \choose 2}{12 \choose 2}{4 \choose 1}^2 - 2,304 \right ] = 85,368

combinations that make four of a kind possible at the turn. On the river, four of a kind can be made when there is either a full house on the board, three of a kind and two other ranks, two pair and one other rank, or a pair and three other ranks. With three of a kind or two pair, any straight flushes made possible by the three different ranks must be subtracted and with a pair, any straight flushes made possible by the four different ranks are subtracted. For three of a kind, choose one of the three cards for the straight flush and then choose 2 of the 3 remaining cards of that rank to make three of a kind for \begin{matrix} 64 \times {4 \choose 1}{3 \choose 1}{3 \choose 2} = 2,304 \end{matrix} possible straight flushes. With two pair, choose two of the three cards that make a possible straight flush and then choose one of the three remaining cards for each rank to make one of \begin{matrix} 64 \times {4 \choose 1}{3 \choose 2}{3 \choose 1}^2 = 6,912 \end{matrix} straight flushes. With a pair there are three cases where a straight flush is possible that have a total of 97,536 combinations:

  • the three non-pair ranks have the same suit as one of the cards in the pair and the four suited cards form one of the 432 rank sets that allows a straight (example 3♠ 9♠ J♠ Q♠ J♦), so choosing one of the four suited ranks and one of the three remaining cards of that rank gives \begin{matrix} 432 \times {4 \choose 1}{3 \choose 1} = 20,736 \end{matrix} possible straight flushes;
  • two of the non-pair ranks have the same suit as one of the cards in the pair and the three suited cards form one of the 64 rank sets that allows a straight (example 8♠ 9♠ J♠ J♥ K♦), so choosing one of the three suited ranks and one of the three remaining cards of that rank to combine with a card from one of the 10 remaining ranks in one of the three remaining suits gives \begin{matrix} 64 \times {4 \choose 1}{3 \choose 1}{3 \choose 1}{10 \choose 1}{3 \choose 1} = 69,120 \end{matrix} possible straight flushes;
  • the three non-pair ranks share a suit that is different than either of the suits in the pair and the three suited cards form one of the 64 rank sets that allows a straight (example 4♠ 6♠ 7♠ J♥ J♦), so choose one of the 10 remaining ranks not used by the suited cards and choose two of the three cards of that rank that have a different suit to give \begin{matrix} 64 \times {4 \choose 1}{10 \choose 1}{3 \choose 2} = 7,680 \end{matrix} possible straight flushes.

Altogether there are

{13 \choose 1}{4 \choose 3}{12 \choose 1}{4 \choose 2} 3,744\, full houses
+ {13 \choose 1}{4 \choose 3}{12 \choose 2}{4 \choose 1}^2 - 2,304 52,608\, three of a kind
+ {13 \choose 2}{4 \choose 2}^2{11 \choose 2}{4 \choose 1} - 6,912 116,640\, two pair
+ {13 \choose 1}{4 \choose 2}{12 \choose 3}{4 \choose 1}^3 - 97,536 1,000,704\, one pair
for a total of 1,173,696\,

combinations on the river that make four of a kind possible without making a straight flush possible.

Oddly enough, a full house can only be the nuts when there is four of a kind on the board. This means that there is no chance of a full house being the nuts on the flop. On the turn and river there are

{13 \choose 1} = 13  and  {13 \choose 1}{48 \choose 1} = 624

combinations that make four of a kind, respectively.

A flush is the nuts when no two cards share the same rank (no pairs, trips or quads) and there are three or more cards of the same suit that do not form a rank set that can make a straight. The number of rank sets that can't make a straight is \begin{matrix}{13 \choose 3} - 64 = 222\end{matrix} with three cards, \begin{matrix}{13 \choose 4} - 432 = 283\end{matrix} with four cards, and \begin{matrix}{13 \choose 5} - 1,208 = 79\end{matrix} with five cards. On the flop all three cards must be part of the flush which gives

222 \times {4 \choose 1} = 888

combinations where the nuts is a flush. On the turn a nut flush is possible with either four cards of the same suit that form one of the 283 ranks sets that doesn't allow a straight or with three cards of the same suit that form one of the 222 ranks sets that doesn't allow a straight combined with one of the other 10 ranks in one of the other three suits. This gives

283 \times {4 \choose 1} + 222 \times {4 \choose 1}{10 \choose 1}{3 \choose 1} = 27,772

ways for a flush to be the nuts on the turn. On the river there are three ways to make a nut flush—five cards of the same suit that form one of 79 ranks sets that can't make a straight; four cards of the same suit that can't make a straight combined with a card in one of the other nine ranks and one of the other three suits; or three cards of the same suit that can't make a straight combinded with two of the remaining 10 ranks, each selected from the three remaining suits. So there are

79 \times {4 \choose 1} +        283 \times {4 \choose 1}{9 \choose 1}{3 \choose 1} +        222 \times {4 \choose 1}{10 \choose 2}{3 \choose 1}^2 = 390,520

combinations on the river where the nut hand is a flush.

A straight is the nuts when no two cards share the same rank (no pairs, trips or quads), the ranks form a rank set that makes a straight possible with the addition of two cards, and no more than two cards share the same suit. Given n cards of distinct ranks, there are 4n ways to assign suits to the cards. This includes 4 suit sets that assign the same suit to each card; \begin{matrix} {n \choose n-1}{4 \choose 1}{3 \choose 1} = 12n \end{matrix} suit sets that assign the same suit to n − 1 cards, and \begin{matrix} {n \choose n-x}{4 \choose 1}{3 \choose 1}^x \end{matrix} suit sets that assign the same suit to nx cards. The number of combinations on the flop where a straight is the nuts is then the 64 rank sets that allow a straight multiplied by the 43 − 4 = 60 suit sets that don't have three of the same suit:

64 \times 60 = 3,840\,

For four ranks, there are \begin{matrix} 4 + {4 \choose 3}{4 \choose 1}{3 \choose 1} = 52 \end{matrix} suit sets that have either three or four of the same suit, giving 44 − 52 = 204 suit sets where no more than two cards share the same suit. For five ranks there are \begin{matrix} 4 + {5 \choose 4}{4 \choose 1}{3 \choose 1} + {5 \choose 3}{4 \choose 1}{3 \choose 1}^2 = 424 \end{matrix} suit sets that have three or more of the same suit and 45 − 424 = 600 suit sets where no more than two cards share the same suit. This gives

432 \times 204 = 88,128\,  and  1,208 \times 600 = 724,800\,

combinations on the turn and river, respectively, where the nut hand is a straight.

Finally, three of a kind is only the nuts when no two cards share the same rank (no pairs, trips or quads), the ranks form a rank set that can't make a straight with the addition of two cards, and no more than two cards share the same suit. As with a straight, the number of combinations is the number of possible rank sets multiplied by the number of allowed suit sets. On the flop, turn and river, respectively, the number of combinations where three of a kind is the nuts are

222 \times 60 = 13,320\,  and  283 \times 204 = 57,732\,  and  79 \times 600 = 47,400\,

[edit] Making high hands

The probabilities for making high hands in Omaha hold 'em fall into three categories based on the poker hand:

  1. Rank-based hands that are based soley on the rank type of the starting hand. This includes the poker hands four of a kind, full house, three of a kind, two pair, one pair, and no pair (high card).
  2. Suit-based hands that are based soley on the suit type of the starting hand. The flush is the only poker hand based soley on suit.
  3. Sequence-based hands that are based on the rank sequences in the starting hand. This includes both straights and staight flushes.

[edit] Making hands based on rank type

See the section "Starting hands" for a description of starting hands and rank types.

The probability of making either four of a kind, a full house, three of a kind, two pair, one pair or no pair depends only on the rank type of the starting hand. This ignores when these hands also make straights, flushes and straight flushes—these hands are based on the suit type and rank sequences of the starting hand. Starting hands consisting of four of a kind can only make a full house, two pair or one pair. Starting hands that include at least two cards of the same rank can make no less than one pair. The rank types have the following probabilities of improving on the flop, turn and river.

Rank type Poker hand Make on flop Make by turn Make by river
Probability Odds Probability Odds Probability Odds
Four of a kind Full house 0.0027752 359.33 : 1 0.0109158 90.61 : 1 0.0268270 36.28 : 1
Two pair 0.1831637 4.46 : 1 0.3378353 1.96 : 1 0.4995375 1.00 : 1
One pair 0.8140611 0.23 : 1 0.6512488 0.54 : 1 0.4736355 1.11 : 1
Three of a kind Four of a kind 0.0000578 17,295.00 : 1 0.0002313 4,323.00 : 1 0.0005782 1,728.60 : 1
Full house 0.0065333 152.06 : 1 0.0252698 38.57 : 1 0.0597826 15.73 : 1
Three of a kind 0.0661425 14.12 : 1 0.0824237 11.13 : 1 0.0909652 9.99 : 1
Two pair 0.1640842 5.09 : 1 0.2950971 2.39 : 1 0.4243756 1.36 : 1
One pair 0.7631822 0.31 : 1 0.5969781 0.68 : 1 0.4242985 1.36 : 1
Either four of a kind or a full house 0.0065911 150.72 : 1 0.0255011 38.21 : 1 0.0603608 15.57 : 1
Four of a kind, a full house, or three of a kind 0.0727336 12.75 : 1 0.1079248 8.27 : 1 0.1513259 5.61 : 1
Two pair Four of a kind 0.0053191 187.00 : 1 0.0106332 93.05 : 1 0.0177048 55.48 : 1
Full house 0.0178076 55.16 : 1 0.0656337 14.24 : 1 0.1463408 5.83 : 1
Three of a kind 0.2136910 3.68 : 1 0.2351732 3.25 : 1 0.2220167 3.50 : 1
Two pair 0.1526364 5.55 : 1 0.2543941 2.93 : 1 0.3376503 1.96 : 1
One pair 0.6105458 0.64 : 1 0.4341659 1.30 : 1 0.2762874 2.62 : 1
Either four of a kind or a full house 0.0231267 42.24 : 1 0.0762668 12.11 : 1 0.1640456 5.10 : 1
Four of a kind, a full house, or three of a kind 0.2368178 3.22 : 1 0.3114400 2.21 : 1 0.3860623 1.59 : 1
One pair Four of a kind 0.0027752 359.33 : 1 0.0057817 171.96 : 1 0.0100204 98.80 : 1
Full house 0.0109852 90.03 : 1 0.0413969 23.16 : 1 0.0950871 9.52 : 1
Three of a kind 0.1259251 6.94 : 1 0.1510947 5.62 : 1 0.1586634 5.30 : 1
Two pair 0.1665125 5.01 : 1 0.2886216 2.46 : 1 0.3971491 1.52 : 1
One pair 0.6938020 0.44 : 1 0.5131051 0.95 : 1 0.3390800 1.95 : 1
Either four of a kind or a full house 0.0137604 71.67 : 1 0.0471785 20.20 : 1 0.1051075 8.51 : 1
Four of a kind, a full house, or three of a kind 0.1396855 6.16 : 1 0.1982732 4.04 : 1 0.2637709 2.79 : 1
No pair Four of a kind 0.0002313 4,323.00 : 1 0.0009251 1,080.00 : 1 0.0023127 431.40 : 1
Full house 0.0062442 159.15 : 1 0.0219241 44.61 : 1 0.0480616 19.81 : 1
Three of a kind 0.0270583 35.96 : 1 0.0470398 20.26 : 1 0.0699058 13.30 : 1
Two pair 0.1186401 7.43 : 1 0.1952359 4.12 : 1 0.2654739 2.77 : 1
One pair 0.5370028 0.86 : 1 0.5691027 0.76 : 1 0.5388950 0.86 : 1
No pair 0.3108233 2.22 : 1 0.1657724 5.03 : 1 0.0753511 12.27 : 1
Either four of a kind or a full house 0.0064755 153.43 : 1 0.0228492 42.77 : 1 0.0503742 18.85 : 1
Four of a kind, a full house, or three of a kind 0.0335338 28.82 : 1 0.0698890 13.31 : 1 0.1202800 7.31 : 1

Not surprisingly, starting with two pair gives the best overall chance of making four of a kind, a full house or three of a kind; one pair has the next best chance for each of these hands. Two pair will improve to at least three of a kind by the river more than one in three times and will make a full house or four of a kind almost one in six times. However, starting with three of a kind is only marginally better than starting with no pair, and starting with three of a kind actually yeilds the lowest probability of making four of a kind. Starting with four of a kind has very few possibilities to improve—there is almost never a reason to play these hands.

[edit] Derivations for making rank-based hands

The derivations for starting hands making four of a kind, a full house, three of a kind, two pair, one pair and no pair are separate for each of the starting hand rank types. The derivations require identifying the individual cases that yeild each possible hand and are sometimes rather detailed, so it is useful to use a notation to indicate the shape of the board for each case. The rank type of the hand is shown using upper case letters to indicate ranks. The ranks on the board are indicated using upper case letters for matches with the starting hand and lower case letters to indicate ranks that don't match the starting hand. So the rank type XXYZ is any hand with a pair of X with two additional ranks Y and Z and the board XYr represents a flop that contains one X, one of the non-paired ranks Y and one other rank r. Note that since Y and Z have an identical relationship to the starting hand—each represents an unpaired rank—XYr and XZr represent the same set of boards and are interchangeable, so derivations for this hand choose one of the two choices represented by Y. In addition to the upper and lower case letters, * is used to represent any rank not already represented on the board, and ? is used to represent any rank not already represented on the board and not included in the starting hand. So for the rank type XXYZ, the board XX* represents a flop that contains two Xs and any other rank (including Y and Z), but X?? is any flop that contains an X and any two cards of a rank other than X, Y or Z, and rrr?? is any board on the river that contains three cards of rank r and any two cards of ranks other than X, Y, Z or r.

Each table shows all of the boards that can make each hand and the derivation for the combinations for that board. Probabilities are determined by dividing the number of combinations for each hand by the \begin{matrix} {48 \choose 3} = 17,296 \end{matrix} boards on the flop, \begin{matrix} {48 \choose 4} = 194,580 \end{matrix} boards on the turn, and \begin{matrix} {48 \choose 5} = 1,712,304 \end{matrix} boards at the river. The probabilities for the boards in each table total 1.0.

[edit] Derivations for starting hands with four of a kind

Starting hands with four of a kind (XXXX) can only improve to a full house or two pair. To make a full house, this hand needs to have two or three cards of the same rank appear on the board. To make two pair, another pair on the board is needed. Of course, any other hand holding a pair also makes at least a full house or two with either of these boards. The following table shows the derivations for making a full house, two pair or one pair when holding four of a kind.

Derivations for rank type XXXX (four of a kind) on the flop
Hand to make Board Derivation Combos Probability Odds
Full house rrr \begin{matrix} {12 \choose 1}{4 \choose 3} \end{matrix} 48 0.0027752 359.3 : 1
Two pair rrs \begin{matrix} {12 \choose 1}{4 \choose 2}{44 \choose 1} \end{matrix} 3,168 0.1831637 4.5 : 1
One pair rst \begin{matrix} {12 \choose 3}{4 \choose 1}^3 \end{matrix} 14,080 0.8140611 0.2 : 1
Derivations for rank type XXXX (four of a kind) on the turn
Hand to make Board Derivation Combos Probability Odds
Full house rrr* \begin{matrix} {12 \choose 1}{4 \choose 3}{44 \choose 1} \end{matrix} 2,112 0.0108541 91.1 : 1
rrrr \begin{matrix} {12 \choose 1}{4 \choose 4} \end{matrix} 12 0.0000617 16,214.0 : 1
Total 2,124 0.0109158 90.6 : 1
Two pair rrss \begin{matrix} {12 \choose 2}{4 \choose 2}^2 \end{matrix} 2,376 0.0122109 80.9 : 1
rrst \begin{matrix} {12 \choose 1}{4 \choose 2}{11 \choose 2}{4 \choose 1}^2 \end{matrix} 63,360 0.3256244 2.1 : 1
Total 65,736 0.3378353 2.0 : 1
One pair rstu \begin{matrix} {12 \choose 4}{4 \choose 1}^4 \end{matrix} 126,720 0.6512488 0.5 : 1
Derivations for rank type XXXX (four of a kind) on the river
Hand to make Board Derivation Combos Probability Odds
Full house rrr** \begin{matrix} {12 \choose 1}{4 \choose 3}{44 \choose 2} \end{matrix} 45,408 0.0265187 36.7 : 1
rrrr* \begin{matrix} {12 \choose 1}{4 \choose 4}{44 \choose 1} \end{matrix} 528 0.0003084 3,242.0 : 1
Total 45,936 0.0268270 36.3 : 1
Two pair rrsst \begin{matrix} {12 \choose 2}{4 \choose 2}^2{40 \choose 1} \end{matrix} 95,040 0.0555042 17.0 : 1
rrstu \begin{matrix} {12 \choose 1}{4 \choose 2}{11 \choose 3}{4 \choose 1}^3 \end{matrix} 760,320 0.4440333 1.3 : 1
Total 855,360 0.4995375 1.0 : 1
One pair rstuv \begin{matrix} {12 \choose 5}{4 \choose 1}^5 \end{matrix} 811,008 0.4736355 1.1 : 1

[edit] Derivations for starting hands with three of a kind

To make a full house or three or four of a kind, starting hands with three of a kind (XXXY) need to either catch the case (last) X or catch two or three of the remaining Y cards (YY or YYY). They also improve to a full house if three or more of another rank appears on the board (rrr or rrrr), although any other hand holding a pair also makes a full house with this board. Three of a kind makes two pair if either a Y card or another pair appears on the board. The following tables show all the ways for XXXY to make four of a kind, a full house, three of a kind, two pair or one pair on the flop, turn and river.

Derivations for rank type XXXY (three of a kind) on the flop
Hand to make Board Derivation Combos Probability Odds
Four of a kind YYY \begin{matrix} {3 \choose 3} \end{matrix} 1 0.0000578 17,295.0 : 1
Full house XYY \begin{matrix} {1 \choose 1}{3 \choose 2} \end{matrix} 3 0.0001735 5,764.3 : 1
Xrr \begin{matrix} {1 \choose 1}{11 \choose 1}{4 \choose 2} \end{matrix} 66 0.0038159 261.1 : 1
rrr \begin{matrix} {11 \choose 1}{4 \choose 3} \end{matrix} 44 0.0025439 392.1 : 1
Total 113 0.0065333 152.1 : 1
Three of a kind XYr \begin{matrix} {1 \choose 1}{3 \choose 1}{44 \choose 1} \end{matrix} 132 0.0076318 130.0 : 1
Xrs \begin{matrix} {1 \choose 1}{11 \choose 2}{4 \choose 1}^2 \end{matrix} 880 0.0508788 18.7 : 1
YYr \begin{matrix} {3 \choose 2}{44 \choose 1} \end{matrix} 132 0.0076318 130.0 : 1
Total 1,144 0.0661425 14.1 : 1
Two pair Yrr \begin{matrix} {3 \choose 1}{11 \choose 1}{4 \choose 2} \end{matrix} 198 0.0114477 86.4 : 1
rrs \begin{matrix} {11 \choose 1}{4 \choose 2}{40 \choose 1} \end{matrix} 2,640 0.1526364 5.6 : 1
Total 2,838 0.1640842 5.1 : 1
One pair Yrs \begin{matrix} {3 \choose 1}{11 \choose 2}{4 \choose 1}^2 \end{matrix} 2,640 0.1526364 5.6 : 1
rst \begin{matrix} {11 \choose 3}{4 \choose 1}^3 \end{matrix} 10,560 0.6105458 0.6 : 1
Total 13,200 0.7631822 0.3 : 1
Derivations for rank type XXXY (three of a kind) on the turn
Hand to make Board Derivation Combos Probability Odds
Four of a kind YYY* \begin{matrix} {3 \choose 3}{45 \choose 1} \end{matrix} 45 0.0002313 4,323.0 : 1
Full house XYYr \begin{matrix} {1 \choose 1}{3 \choose 2}{44 \choose 1} \end{matrix} 132 0.0006784 1,473.1 : 1
XYrr \begin{matrix} {1 \choose 1}{3 \choose 1}{11 \choose 1}{4 \choose 2} \end{matrix} 198 0.0010176 981.7 : 1
Xrrs \begin{matrix} {1 \choose 1}{11 \choose 1}{4 \choose 2}{40 \choose 1} \end{matrix} 2,640 0.0135677 72.7 : 1
rrr* \begin{matrix} {11 \choose 1}{4 \choose 3}{44 \choose 1} \end{matrix} 1,936 0.0099496 99.5 : 1
rrrr \begin{matrix} {11 \choose 1}{4 \choose 4} \end{matrix} 11 0.0000565 17,688.1 : 1
Total 4,917 0.0252698 38.6 : 1
Three of a kind XYrs \begin{matrix} {1 \choose 1}{3 \choose 1}{11 \choose 2}{4 \choose 1}^2 \end{matrix} 2,640 0.0135677 72.7 : 1
Xrst \begin{matrix} {1 \choose 1}{11 \choose 3}{4 \choose 1}^3 \end{matrix} 10,560 0.0542707 17.4 : 1
YY?? \begin{matrix} {3 \choose 2}{44 \choose 2} \end{matrix} 2,838 0.0145853 67.6 : 1
Total 16,038 0.0824237 11.1 : 1
Two pair Yrrs \begin{matrix} {3 \choose 1}{11 \choose 1}{4 \choose 2}{40 \choose 1} \end{matrix} 7,920 0.0407031 23.6 : 1
rrss \begin{matrix} {11 \choose 2}{4 \choose 2}^2 \end{matrix} 1,980 0.0101758 97.3 : 1
rrst \begin{matrix} {11 \choose 1}{4 \choose 2}{10 \choose 2}{4 \choose 1}^2 \end{matrix} 47,520 0.2442183 3.1 : 1
Total 57,420 0.2950971 2.4 : 1
One pair Yrst \begin{matrix} {3 \choose 1}{11 \choose 3}{4 \choose 1}^3 \end{matrix} 31,680 0.1628122 5.1 : 1
rstu \begin{matrix} {11 \choose 4}{4 \choose 1}^4 \end{matrix} 84,480 0.4341659 1.3 : 1
Total 116,160 0.5969781 0.7 : 1
Derivations for rank type XXXY (three of a kind) on the river
Hand to make Board Derivation Combos Probability Odds
Four of a kind YYY** \begin{matrix} {3 \choose 3}{45 \choose 2} \end{matrix} 990 0.0005782 1,728.6 : 1
Full house XYY?? \begin{matrix} {1 \choose 1}{3 \choose 2}{44 \choose 2} \end{matrix} 2,838 0.0016574 602.3 : 1
XYrrs \begin{matrix} {1 \choose 1}{3 \choose 1}{11 \choose 1}{4 \choose 2}{40 \choose 1} \end{matrix} 7,920 0.0046253 215.2 : 1
Xrrss \begin{matrix} {1 \choose 1}{11 \choose 2}{4 \choose 2}^2 \end{matrix} 1,980 0.0011563 863.8 : 1
Xrrst \begin{matrix} {1 \choose 1}{11 \choose 1}{4 \choose 2}{10 \choose 2}{4 \choose 1}^2 \end{matrix} 47,520 0.0277521 35.0 : 1
rrr** \begin{matrix} {11 \choose 1}{4 \choose 3}{44 \choose 2} \end{matrix} 41,624 0.0243088 40.1 : 1
rrrr* \begin{matrix} {11 \choose 1}{4 \choose 4}{44 \choose 1} \end{matrix} 484 0.0002827 3,536.8 : 1
Total 102,366 0.0597826 15.7 : 1
Three of a kind XYrst \begin{matrix} {1 \choose 1}{3 \choose 1}{11 \choose 3}{4 \choose 1}^3 \end{matrix} 31,680 0.0185014 53.1 : 1
Xrstu \begin{matrix} {1 \choose 1}{11 \choose 4}{4 \choose 1}^4 \end{matrix} 84,480 0.0493370 19.3 : 1
YYrrs \begin{matrix} {3 \choose 2}{11 \choose 1}{4 \choose 2}{40 \choose 1} \end{matrix} 7,920 0.0046253 215.2 : 1
YYrst \begin{matrix} {3 \choose 2}{11 \choose 3}{4 \choose 2}^3 \end{matrix} 31,680 0.0185014 53.1 : 1
Total 155,760 0.0909652 10.0 : 1
Two pair Yrrss \begin{matrix} {3 \choose 1}{11 \choose 2}{4 \choose 2}^2 \end{matrix} 5,940 0.0034690 287.3 : 1
Yrrst \begin{matrix} {3 \choose 1}{11 \choose 1}{4 \choose 2}{10 \choose 2}{4 \choose 1}^2 \end{matrix} 142,560 0.0832562 11.0 : 1
rrsst \begin{matrix} {11 \choose 2}{4 \choose 2}^2{36 \choose 1} \end{matrix} 71,280 0.0416281 23.0 : 1
rrstu \begin{matrix} {11 \choose 1}{4 \choose 2}{10 \choose 3}{4 \choose 1}^3 \end{matrix} 506,880 0.2960222 2.4 : 1
Total 726,660 0.4243756 1.4 : 1
One pair Yrstu \begin{matrix} {3 \choose 1}{11 \choose 4}{4 \choose 1}^4 \end{matrix} 253,440 0.1480111 5.8 : 1
rstuv \begin{matrix} {11 \choose 5}{4 \choose 1}^5 \end{matrix} 473,088 0.2762874 2.6 : 1
Total 726,528 0.4242985 1.4 : 1

[edit] Derivations for starting hands with two pair

Starting hands with two pair (XXYY) can improve to three of a kind, a full house or four of a kind when one or more of the four remaining X or Y cards appears (X, XX or XY). They also improve to a full house if three or more of another rank appears on the board (rrr or rrrr), although any other hand holding a pair also makes at least a full house with this board. If another pair appears the hand makes two pair, although any other hand holding a pair also makes at least two pair. The following tables show all the ways for XXYY to make four of a kind, a full house, three of a kind, two pair or one pair on the flop, turn and river.

Derivations for rank type XXYY (two pair) on the flop
Hand to make Board Derivation Combos Probability Odds
Four of a kind XX* \begin{matrix} {2 \choose 2}{2 \choose 1}{46 \choose 1} \end{matrix} 92 0.0053191 187.0 : 1
Full house Xrr \begin{matrix} {2 \choose 1}{2 \choose 1}{11 \choose 1}{4 \choose 2} \end{matrix} 264 0.0152636 64.5 : 1
rrr \begin{matrix} {11 \choose 1}{4 \choose 3} \end{matrix} 44 0.0025439 392.1 : 1
Total 308 0.0178076 55.2 : 1
Three of a kind XY? \begin{matrix} {2 \choose 1}^2{44 \choose 1} \end{matrix} 176 0.0101758 97.3 : 1
Xrs \begin{matrix} {2 \choose 1}{2 \choose 1}{11 \choose 2}{4 \choose 1}^2 \end{matrix} 3,520 0.2035153 3.9 : 1
Total 3,696 0.2136910 3.7 : 1
Two pair rrs \begin{matrix} {11 \choose 1}{4 \choose 2}{40 \choose 1} \end{matrix} 2,640 0.1526364 5.6 : 1
One pair rst \begin{matrix} {11 \choose 3}{4 \choose 1}^3 \end{matrix} 10,560 0.6105458 0.6 : 1
Derivations for rank type XXYY (two pair) on the turn
Hand to make Board Derivation Combos Probability Odds
Four of a kind XXYY \begin{matrix} {2 \choose 2}{2 \choose 2} \end{matrix} 1 0.0000051 194,579.0 : 1
XXYr \begin{matrix} {2 \choose 2}{2 \choose 1}{2 \choose 1}{44 \choose 1} \end{matrix} 176 0.0009045 1,104.6 : 1
XX?? \begin{matrix} {2 \choose 2}{2 \choose 1}{44 \choose 2} \end{matrix} 1,892 0.0097235 101.8 : 1
Total 2,069 0.0106332 93.0 : 1
Full house XYrr \begin{matrix} {2 \choose 1}^2{11 \choose 1}{4 \choose 2} \end{matrix} 264 0.0013568 736.0 : 1
Xrrr \begin{matrix} {2 \choose 1}{2 \choose 1}{11 \choose 1}{4 \choose 3} \end{matrix} 176 0.0009045 1,104.6 : 1
Xrrs \begin{matrix} {2 \choose 1}{2 \choose 1}{11 \choose 1}{4 \choose 2}{40 \choose 1} \end{matrix} 10,560 0.0542707 17.4 : 1
rrrr \begin{matrix} {11 \choose 1}{4 \choose 4} \end{matrix} 11 0.0000565 17,688.1 : 1
rrrs \begin{matrix} {11 \choose 1}{4 \choose 3}{40 \choose 1} \end{matrix} 1,760 0.0090451 109.6 : 1
Total 12,771 0.0656337 14.2 : 1
Three of a kind XYrs \begin{matrix} {2 \choose 1}^2{11 \choose 2}{4 \choose 1}^2 \end{matrix} 3,520 0.0180902 54.3 : 1
Xrst \begin{matrix} {2 \choose 1}{2 \choose 1}{11 \choose 3}{4 \choose 1}^3 \end{matrix} 42,240 0.2170829 3.6 : 1
Total 45,760 0.2351732 3.3 : 1
Two pair rrss \begin{matrix} {11 \choose 2}{4 \choose 2}^2 \end{matrix} 1,980 0.0101758 97.3 : 1
rrst \begin{matrix} {11 \choose 1}{4 \choose 2}{10 \choose 2}{4 \choose 1}^2 \end{matrix} 47,520 0.2442183 3.1 : 1
Total 49,500 0.2543941 2.9 : 1
One pair rstu \begin{matrix} {11 \choose 4}{4 \choose 1}^4 \end{matrix} 84,480 0.4341659 1.3 : 1
Derivations for rank type XXYY (two pair) on the river
Hand to make Board Derivation Combos Probability Odds
Four of a kind XXYY* \begin{matrix} {2 \choose 2}{2 \choose 2}{44 \choose 1} \end{matrix} 44 0.0000257 38,917.0 : 1
XXY?? \begin{matrix} {2 \choose 1}{2 \choose 2}{2 \choose 1}{44 \choose 2} \end{matrix} 3,784 0.0022099 451.5 : 1
XX??? \begin{matrix} {2 \choose 1}{2 \choose 2}{44 \choose 3} \end{matrix} 26,488 0.0154692 63.6 : 1
Total 30,316 0.0177048 55.5 : 1
Full house XYrrr \begin{matrix} {2 \choose 1}^2{11 \choose 1}{4 \choose 3} \end{matrix} 176 0.0001028 9,728.0 : 1
XYrrs \begin{matrix} {2 \choose 1}^2{11 \choose 1}{4 \choose 2}{40 \choose 1} \end{matrix} 10,560 0.0061671 161.2 : 1
Xrrrs \begin{matrix} {2 \choose 1}{2 \choose 1}{11 \choose 1}{4 \choose 3}{40 \choose 1} \end{matrix} 7,040 0.0041114 242.2 : 1
Xrrss \begin{matrix} {2 \choose 1}{2 \choose 1}{11 \choose 2}{4 \choose 2}^2 \end{matrix} 7,922 0.0046253 215.2 : 1
Xrrst \begin{matrix} {2 \choose 1}{2 \choose 1}{11 \choose 1}{4 \choose 2}{10 \choose 2}{4 \choose 1}^2 \end{matrix} 190,080 0.1110083 8.0 : 1
rrr?? \begin{matrix} {11 \choose 1}{4 \choose 3}{40 \choose 2} \end{matrix} 34,320 0.0200432 48.9 : 1
rrrr* \begin{matrix} {11 \choose 1}{4 \choose 4}{44 \choose 1} \end{matrix} 484 0.0002827 3,536.8 : 1
Total 250,580 0.1463408 5.8 : 1
Three of a kind XYrst \begin{matrix} {2 \choose 1}^2{11 \choose 3}{4 \choose 1}^3 \end{matrix} 42,240 0.0246685 39.5 : 1
Xrstu \begin{matrix} {2 \choose 1}{2 \choose 1}{11 \choose 4}{4 \choose 1}^4 \end{matrix} 337,920 0.1973481 4.1 : 1
Total 380,160 0.2220167 3.5 : 1
Two pair rrsst \begin{matrix} {11 \choose 2}{4 \choose 2}^2{36 \choose 1} \end{matrix} 71,280 0.0416281 23.0 : 1
rrstu \begin{matrix} {11 \choose 1}{4 \choose 2}{10 \choose 3}{4 \choose 1}^3 \end{matrix} 506,880 0.2960222 2.4 : 1
Total 578,160 0.3376503 2.0 : 1
One pair rstuv \begin{matrix} {11 \choose 5}{4 \choose 1}^5 \end{matrix} 473,088 0.2762874 2.6 : 1

[edit] Derivations for starting hands with one pair

Starting hands with one pair (XXYZ) can improve to three of a kind, a full house or four of a kind when either an X card is on the board or when two or three of the remaining Y or Z cards (YY or YYY) is on the board. They also improve to a full house if three or more of another rank is on the board (rrr or rrrr), although any other hand holding a pair also makes a full house with this board. These hands make two pair if another pair (rr) appears on the board. The following tables show all the ways for XXYZ to make four of a kind, a full house, three of a kind, two pair or one pair on the flop, turn and river.

Derivations for rank type XXYZ (one pair) on the flop
Hand to make Board Derivation Combos Probability Odds
Four of a kind XX* \begin{matrix} {2 \choose 2}{46 \choose 1} \end{matrix} 46 0.0026596 375.0 : 1
YYY \begin{matrix} {2 \choose 1}{3 \choose 3} \end{matrix} 2 0.0001156 8,647.0 : 1
Total 48 0.0027752 359.3 : 1
Full house XYY \begin{matrix} {2 \choose 1}{2 \choose 1}{3 \choose 2} \end{matrix} 12 0.0006938 1,440.3 : 1
Xrr \begin{matrix} {2 \choose 1}{10 \choose 1}{4 \choose 2} \end{matrix} 120 0.0069380 143.1 : 1
YYZ \begin{matrix} {2 \choose 1}{3 \choose 2}{3 \choose 1} \end{matrix} 18 0.0010407 959.9 : 1
rrr \begin{matrix} {10 \choose 1}{4 \choose 3} \end{matrix} 40 0.0023127 431.4 : 1
Total 190 0.0109852 90.0 : 1
Three of a kind XYZ \begin{matrix} {2 \choose 1}{3 \choose 1}^2 \end{matrix} 18 0.0010407 959.9 : 1
XYr \begin{matrix} {2 \choose 1}{2 \choose 1}{3 \choose 1}{40 \choose 1} \end{matrix} 480 0.0277521 35.0 : 1
Xrs \begin{matrix} {2 \choose 1}{10 \choose 2}{4 \choose 1}^2 \end{matrix} 1,440 0.0832562 11.0 : 1
YYr \begin{matrix} {2 \choose 1}{3 \choose 2}{40 \choose 1} \end{matrix} 240 0.0138760 71.1 : 1
Total 2,178 0.1259251 6.9 : 1
Two pair YZr \begin{matrix} {3 \choose 1}^2{40 \choose 1} \end{matrix} 360 0.0208141 47.0 : 1
Yrr \begin{matrix} {2 \choose 1}{3 \choose 1}{10 \choose 1}{4 \choose 2} \end{matrix} 360 0.0208141 47.0 : 1
rrs \begin{matrix} {10 \choose 1}{4 \choose 2}{36 \choose 1} \end{matrix} 2,160 0.1248844 7.0 : 1
Total 2,880 0.1665125 5.0 : 1
One pair Yrs \begin{matrix} {2 \choose 1}{3 \choose 1}{10 \choose 2}{4 \choose 1}^2 \end{matrix} 4,320 0.2497687 3.0 : 1
rst \begin{matrix} {10 \choose 3}{4 \choose 1}^3 \end{matrix} 7,680 0.4440333 1.3 : 1
Total 12,000 0.6938020 0.4 : 1
Derivations for rank type XXYZ (one pair) on the turn
Hand to make Board Derivation Combos Probability Odds
Four of a kind XX** \begin{matrix} {2 \choose 2}{46 \choose 2} \end{matrix} 1,035 0.0053191 187.0 : 1
YYY* \begin{matrix} {2 \choose 1}{3 \choose 3}{45 \choose 1} \end{matrix} 90 0.0004625 2,161.0 : 1
Total 1,125 0.0057817 172.0 : 1
Full house XYYZ \begin{matrix} {2 \choose 1}{2 \choose 1}{3 \choose 2}{3 \choose 1} \end{matrix} 36 0.0001850 5,404.0 : 1
XYYr \begin{matrix} {2 \choose 1}{2 \choose 1}{3 \choose 2}{40 \choose 1} \end{matrix} 480 0.0024669 404.4 : 1
XYrr \begin{matrix} {2 \choose 1}{2 \choose 1}{3 \choose 1}{10 \choose 1}{4 \choose 2} \end{matrix} 720 0.0037003 269.3 : 1
Xrrs \begin{matrix} {2 \choose 1}{10 \choose 1}{4 \choose 2}{36 \choose 1} \end{matrix} 4,320 0.0222017 44.0 : 1
YYZZ \begin{matrix} {2 \choose 2}{3 \choose 2}^2 \end{matrix} 9 0.0000463 21,619.0 : 1
YYZr \begin{matrix} {2 \choose 1}{2 \choose 2}{3 \choose 2}{3 \choose 1}{40 \choose 1} \end{matrix} 720 0.0037003 269.3 : 1
rrr* \begin{matrix} {10 \choose 1}{4 \choose 3}{44 \choose 1} \end{matrix} 1,760 0.0090451 109.6 : 1
rrrr \begin{matrix} {10 \choose 1}{4 \choose 4} \end{matrix} 10 0.0000514 19,457.0 : 1
Total 8,055 0.0413969 23.2 : 1
Three of a kind XYZr \begin{matrix} {2 \choose 1}{2 \choose 2}{3 \choose 1}^2{40 \choose 1} \end{matrix} 720 0.0037003 269.3 : 1
XYrs \begin{matrix} {2 \choose 1}{2 \choose 1}{3 \choose 1}{10 \choose 2}{4 \choose 1}^2 \end{matrix} 8,640 0.0444033 21.5 : 1
Xrst \begin{matrix} {2 \choose 1}{10 \choose 3}{4 \choose 1}^3 \end{matrix} 15,360 0.0789393 11.7 : 1
YY?? \begin{matrix} {2 \choose 1}{3 \choose 2}{40 \choose 2} \end{matrix} 4,680 0.0240518 40.6 : 1
Total 29,400 0.1510947 5.6 : 1
Two pair YZ?? \begin{matrix} {3 \choose 1}^2{40 \choose 2} \end{matrix} 7,020 0.0360777 26.7 : 1
Yrrs \begin{matrix} {2 \choose 1}{3 \choose 1}{10 \choose 1}{4 \choose 2}{36 \choose 1} \end{matrix} 12,960 0.0666050 14.0 : 1
rrss \begin{matrix} {10 \choose 2}{4 \choose 2}^2 \end{matrix} 1,620 0.0083256 119.1 : 1
rrst \begin{matrix} {10 \choose 1}{4 \choose 2}{9 \choose 2}{4 \choose 1}^2 \end{matrix} 34,560 0.1776133 4.6 : 1
Total 56,160 0.2886216 2.5 : 1
One pair Yrst \begin{matrix} {2 \choose 1}{3 \choose 1}{10 \choose 3}{4 \choose 1}^3 \end{matrix} 46,080 0.2368178 3.2 : 1
rstu \begin{matrix} {10 \choose 4}{4 \choose 1}^4 \end{matrix} 53,760 0.2762874 2.6 : 1
Total 99,840 0.5131051 0.9 : 1
Derivations for rank type XXYZ (one pair) on the river
Hand to make Board Derivation Combos Probability Odds
Four of a kind XX*** \begin{matrix} {2 \choose 2}{46 \choose 3} \end{matrix} 15,180 0.0088652 111.8 : 1
YYY** \begin{matrix} {2 \choose 1}{3 \choose 3}{45 \choose 2} \end{matrix} 1,980 0.0011563 863.8 : 1
XXYYY \begin{matrix} {2 \choose 2}{2 \choose 1}{3 \choose 3} \end{matrix} −2 −0.0000012 −856,153 : 1
Total (see #1 below) 17,158 0.0100204 98.8 : 1
Full house XYYZZ \begin{matrix} {2 \choose 1}{2 \choose 2}{3 \choose 2}{3 \choose 2} \end{matrix} 18 0.0000105 95,127.0 : 1
XYYZr \begin{matrix} {2 \choose 1}{2 \choose 1}{3 \choose 2}{3 \choose 1}{40 \choose 1} \end{matrix} 1,440 0.0008410 1,188.1 : 1
XYY?? \begin{matrix} {2 \choose 1}{2 \choose 1}{3 \choose 2}{40 \choose 2} \end{matrix} 9,360 0.0054663 181.9 : 1
XYZrr \begin{matrix} {2 \choose 1}{2 \choose 2}{3 \choose 1}^2{10 \choose 1}{4 \choose 2} \end{matrix} 1,080 0.0006307 1,584.5 : 1
XYrrs \begin{matrix} {2 \choose 1}{2 \choose 1}{3 \choose 1}{10 \choose 1}{4 \choose 2}{36 \choose 1} \end{matrix} 25,920 0.0151375 65.1 : 1
Xrrss \begin{matrix} {2 \choose 1}{10 \choose 1}{4 \choose 2}{36 \choose 1} \end{matrix} 3,240 0.0018922 527.5 : 1
Xrrst \begin{matrix} {2 \choose 1}{10 \choose 1}{4 \choose 2}{36 \choose 1} \end{matrix} 69,120 0.0403667 23.8 : 1
YYZZr \begin{matrix} {2 \choose 2}{3 \choose 2}^2{40 \choose 1} \end{matrix} 360 0.0002102 4,755.4 : 1
YYZ?? \begin{matrix} {2 \choose 1}{2 \choose 2}{3 \choose 2}{3 \choose 1}{40 \choose 2} \end{matrix} 14,040 0.0081995 121.0 : 1
rrr** \begin{matrix} {10 \choose 1}{4 \choose 3}{44 \choose 2} \end{matrix} 37,840 0.0220989 44.3 : 1
rrrXX \begin{matrix} {10 \choose 1}{4 \choose 3}{2 \choose 2} \end{matrix} −40 −0.0000234 −42,808.6 : 1
rrrr* \begin{matrix} {10 \choose 1}{4 \choose 4}{44 \choose 1} \end{matrix} 440 0.0002570 3,890.6 : 1
Total (see #2 below) 162,818 0.0950871 9.5 : 1
Three of a kind XYZrs \begin{matrix} {2 \choose 1}{2 \choose 2}{3 \choose 1}^2{10 \choose 2}{4 \choose 1}^2 \end{matrix} 12,960 0.0075687 131.1 : 1
XYrst \begin{matrix} {2 \choose 1}{2 \choose 1}{3 \choose 1}{10 \choose 3}{4 \choose 1}^3 \end{matrix} 92,160 0.0538222 17.6 : 1
Xrstu \begin{matrix} {2 \choose 1}{10 \choose 4}{4 \choose 1}^4 \end{matrix} 107,520 0.0627926 14.9 : 1
YYrrs \begin{matrix} {2 \choose 1}{3 \choose 2}{10 \choose 1}{4 \choose 2}{36 \choose 1} \end{matrix} 12,960 0.0075687 131.1 : 1
YYrst \begin{matrix} {2 \choose 1}{3 \choose 2}{10 \choose 3}{4 \choose 1}^3 \end{matrix} 46,080 0.0269111 36.2 : 1
Total 271,680 0.1586634 5.3 : 1
Two pair YZrrs \begin{matrix} {3 \choose 1}^2{10 \choose 1}{4 \choose 2}{36 \choose 1} \end{matrix} 19,440 0.0113531 87.1 : 1
YZrst \begin{matrix} {3 \choose 1}^2{10 \choose 3}{4 \choose 1}^3 \end{matrix} 69,120 0.0403667 23.8 : 1
Yrrss \begin{matrix} {2 \choose 1}{3 \choose 1}{10 \choose 2}{4 \choose 2}^2 \end{matrix} 9,720 0.0056766 175.2 : 1
Yrrst \begin{matrix} {2 \choose 1}{3 \choose 1}{10 \choose 1}{4 \choose 2}{9 \choose 2}{4 \choose 1}^2 \end{matrix} 207,360 0.1211000 7.3 : 1
rrsst \begin{matrix} {10 \choose 2}{4 \choose 2}^2{32 \choose 1} \end{matrix} 51,840 0.0302750 32.0 : 1
rrstu \begin{matrix} {10 \choose 1}{4 \choose 2}{9 \choose 3}{4 \choose 1}^3 \end{matrix} 322,560 0.1883778 4.3 : 1
Total 680,040 0.3971491 1.5 : 1
One pair Yrstu \begin{matrix} {2 \choose 1}{3 \choose 1}{10 \choose 4}{4 \choose 1}^4 \end{matrix} 322,560 0.1883778 4.3 : 1
rstuv \begin{matrix} {10 \choose 5}{4 \choose 1}^5 \end{matrix} 258,048 0.1507022 5.6 : 1
Total 580,608 0.3390800 1.9 : 1
  1. The board XXYYY is included in both XX*** and YY***, so it is subtracted from the total.
  2. The board rrrXX makes four of a kind X and is included in rrr**, so it is subtracted from the total.

[edit] Derivations for starting hands with no pair

Starting hands with no pair (XYZR) can improve when when two or three of the remaining X, Y, Z or R cards (XX or XXX) appears on the board. These hands can make two pair or a full house when two of more ranks from the hand appear (XY or XXY). They also can make three of a kind or a pair if two or three other ranks (ss or sss) appear, although these boards are likely to improve other hands at least as much. The following tables show all the ways for XYZR to make four of a kind, a full house, three of a kind, two pair, one pair or no pair (high card) on the flop, turn and river.

Derivations for rank type XYZR (no pair) on the flop
Hand to make Board Derivation Combos Probability Odds
Four of a kind XXX \begin{matrix} {4 \choose 1}{3 \choose 3} \end{matrix} 4 0.0002313 4,323.0 : 1
Full house XXY \begin{matrix} {4 \choose 1}{3 \choose 2}{3 \choose 1}{3 \choose 1} \end{matrix} 108 0.0062442 159.1 : 1
Three of a kind XXs \begin{matrix} {4 \choose 1}{3 \choose 2}{36 \choose 1} \end{matrix} 432 0.0249769 39.0 : 1
sss \begin{matrix} {9 \choose 1}{4 \choose 3} \end{matrix} 36 0.0020814 479.4 : 1
Total 468 0.0270583 36.0 : 1
Two pair XYZ \begin{matrix} {4 \choose 3}{3 \choose 1}^3 \end{matrix} 108 0.0062442 159.1 : 1
XYs \begin{matrix} {4 \choose 2}{3 \choose 1}^2{36 \choose 1} \end{matrix} 1,944 0.1123959 7.9 : 1
Total 2,052 0.1186401 7.4 : 1
One pair X?? \begin{matrix} {4 \choose 1}{3 \choose 1}{36 \choose 2} \end{matrix} 7,560 0.4370953 1.3 : 1
sst \begin{matrix} {9 \choose 1}{4 \choose 2}{32 \choose 1} \end{matrix} 1,728 0.0999075 9.0 : 1
Total 9,288 0.5370028 0.9 : 1
No pair stu \begin{matrix} {9 \choose 3}{4 \choose 1}^3 \end{matrix} 5,376 0.3108233 2.2 : 1
Derivations for rank type XYZR (no pair) on the turn
Hand to make Board Derivation Combos Probability Odds
Four of a kind XXX* \begin{matrix} {4 \choose 1}{3 \choose 3}{45 \choose 1} \end{matrix} 180 0.0009251 1,080.0 : 1
Full house XXYY \begin{matrix} {4 \choose 2}{3 \choose 2}^2 \end{matrix} 54 0.0002775 3,602.3 : 1
XXYZ \begin{matrix} {4 \choose 1}{3 \choose 2}{3 \choose 2}{3 \choose 1}^2 \end{matrix} 324 0.0016651 599.6 : 1
XXYs \begin{matrix} {4 \choose 1}{3 \choose 2}{3 \choose 1}{3 \choose 1}{36 \choose 1} \end{matrix} 3,888 0.0199815 49.0 : 1
Total 4,266 0.0219241 44.6 : 1
Three of a kind XX?? \begin{matrix} {4 \choose 1}{3 \choose 2}{36 \choose 2} \end{matrix} 7,560 0.0388529 24.7 : 1
Xsss \begin{matrix} {4 \choose 1}{3 \choose 1}{9 \choose 1}{4 \choose 3} \end{matrix} 432 0.0022202 449.4 : 1
ssss \begin{matrix} {9 \choose 1}{4 \choose 4} \end{matrix} 9 0.0000463 21,619.0 : 1
ssst \begin{matrix} {9 \choose 1}{4 \choose 3}{32 \choose 1} \end{matrix} 1,152 0.0059204 167.9 : 1
Total 9,153 0.0470398 20.3 : 1
Two pair XYZR \begin{matrix} {4 \choose 4}{3 \choose 1}^4 \end{matrix} 81 0.0004163 2,401.2 : 1
XYZs \begin{matrix} {4 \choose 3}{3 \choose 1}^3{36 \choose 1} \end{matrix} 3,888 0.0199815 49.0 : 1
XY?? \begin{matrix} {4 \choose 2}{3 \choose 1}^2{36 \choose 2} \end{matrix} 34,020 0.1748381 4.7 : 1
Total 37,989 0.1952359 4.1 : 1
One pair Xsst \begin{matrix} {4 \choose 1}{3 \choose 1}{9 \choose 1}{4 \choose 2}{32 \choose 1} \end{matrix} 20,736 0.1065680 8.4 : 1
Xstu \begin{matrix} {4 \choose 1}{3 \choose 1}{9 \choose 3}{4 \choose 1}^3 \end{matrix} 64,512 0.3315449 2.0 : 1
sstt \begin{matrix} {9 \choose 2}{4 \choose 2}^2 \end{matrix} 1,296 0.0066605 149.1 : 1
sstu \begin{matrix} {9 \choose 1}{4 \choose 2}{8 \choose 2}{4 \choose 1}^2 \end{matrix} 24,192 0.1243293 7.0 : 1
Total 110,736 0.5691027 0.8 : 1
No pair stuv \begin{matrix} {9 \choose 4}{4 \choose 1}^4 \end{matrix} 32,256 0.1657724 5.0 : 1
Derivations for rank type XYZR (no pair) on the river
Hand to make Board Derivation Combos Probability Odds
Four of a kind XXX** \begin{matrix} {4 \choose 1}{3 \choose 3}{45 \choose 2} \end{matrix} 3,960 0.0023127 431.4 : 1
Full house XXYYZ \begin{matrix} {4 \choose 2}{3 \choose 2}^2{2 \choose 1}{3 \choose 1} \end{matrix} 324 0.0001892 5,283.9 : 1
XXYYs \begin{matrix} {4 \choose 2}{3 \choose 2}^2{36 \choose 1} \end{matrix} 1,944 0.0011353 879.8 : 1
XXYZR \begin{matrix} {4 \choose 1}{3 \choose 2}{3 \choose 3}{3 \choose 1}^3 \end{matrix} 324 0.0001892 5,283.9 : 1
XXYZs \begin{matrix} {4 \choose 1}{3 \choose 2}{3 \choose 2}{3 \choose 1}^2{36 \choose 1} \end{matrix} 11,664 0.0068119 145.8 : 1
XXY?? \begin{matrix} {4 \choose 1}{3 \choose 2}{3 \choose 1}{3 \choose 1}{36 \choose 2} \end{matrix} 68,040 0.0397359 24.2 : 1
Total 82,296 0.0480616 19.8 : 1
Three of a kind XX??? \begin{matrix} {4 \choose 1}{3 \choose 2}{36 \choose 3} \end{matrix} 85,680 0.0500378 19.0 : 1
XYsss \begin{matrix} {4 \choose 2}{3 \choose 1}^2{9 \choose 1}{4 \choose 3} \end{matrix} 1,944 0.0011353 879.8 : 1
Xssst \begin{matrix} {4 \choose 1}{3 \choose 1}{9 \choose 1}{4 \choose 3}{32 \choose 1} \end{matrix} 13,824 0.0080733 122.9 : 1
ssss* \begin{matrix} {9 \choose 1}{4 \choose 4}{44 \choose 1} \end{matrix} 396 0.0002313 4,323.0 : 1
sss?? \begin{matrix} {9 \choose 1}{4 \choose 3}{32 \choose 2} \end{matrix} 17,856 0.0104281 94.9 : 1
Total 119,700 0.0699058 13.3 : 1
Two pair XYZRs \begin{matrix} {4 \choose 4}{3 \choose 1}^4{36 \choose 1} \end{matrix} 2,916 0.0017030 586.2 : 1
XYZ?? \begin{matrix} {4 \choose 3}{3 \choose 1}^3{36 \choose 2} \end{matrix} 68,040 0.0397359 24.2 : 1
XYsst \begin{matrix} {4 \choose 2}{3 \choose 1}^2{9 \choose 1}{4 \choose 2}{32 \choose 1} \end{matrix} 93,312 0.0544950 17.4 : 1
XYstu \begin{matrix} {4 \choose 2}{3 \choose 1}^2{9 \choose 3}{4 \choose 1}^3 \end{matrix} 290,304 0.1695400 4.9 : 1
Total 454,572 0.2654739 2.8 : 1
One pair Xsstt \begin{matrix} {4 \choose 1}{3 \choose 1}{9 \choose 2}{4 \choose 2}^2 \end{matrix} 15,552 0.0090825 109.1 : 1
Xsstu \begin{matrix} {4 \choose 1}{3 \choose 1}{9 \choose 1}{4 \choose 2}{8 \choose 2}{4 \choose 1}^2 \end{matrix} 290,304 0.1695400 4.9 : 1
Xstuv \begin{matrix} {4 \choose 1}{3 \choose 1}{9 \choose 4}{4 \choose 1}^4 \end{matrix} 387,072 0.2260533 3.4 : 1
ssttu \begin{matrix} {9 \choose 2}{4 \choose 2}^2{28 \choose 1} \end{matrix} 36,288 0.0211925 46.2 : 1
sstuv \begin{matrix} {9 \choose 1}{4 \choose 2}{8 \choose 3}{4 \choose 1}^3 \end{matrix} 193,536 0.1130267 7.8 : 1
Total 922,752 0.5388950 0.9 : 1
No pair stuvw \begin{matrix} {9 \choose 5}{4 \choose 1}^5 \end{matrix} 129,024 0.0753511 12.3 : 1

[edit] Making a flush

See the section "Starting hands" for a description of starting hands and suit types.

The probability of making a flush depends only on the suit type of the starting hand. This ignores when these hands also make four of a kind and full houses—these hands are based on the rank type of the starting hand. Starting hands consisting of all four suits (suit type abcd) can't make a flush. The starting hands that can make straight flushes are a subset of the hands that can make flushes and the boards that make straight flushes are a subset of the boards that make flushes. The subset of both starting hands and boards that can make straight flushes are based on the rank sequences of their respective suited cards.

To make a flush on the flop, all three cards must be the same suit. If s is the number of cards with the same suit in the hand (s = 2, 3, 4) then the probability Pf of making a flush on the flop with that suit is

P_f = \frac{{13 - s \choose 3}}{{48 \choose 3}}

On the turn a flush is possible with either four cards of the same suit, or three cards of the same suit combined with one of the 39 − (4 − s) = 35 + s cards from one of the other suits, which gives the probability

P_t = \frac{{13 - s \choose 4} + {13 - s \choose 3}{35 + s \choose 1}}{{48 \choose 4}}

for completing a flush in a suit by the turn. On the river there are three ways to fill a flush—five cards of the same suit; four cards of the same suit combined with one of the 35 + s cards in one of the other three suits; or three cards of the same suit combinded with two of the remaining 35 + s cards in one of the other three suits. This gives the probability

P_r = \frac{{13 - s \choose 5} + {13 - s \choose 4}{35 + s \choose 1} + {13 - s \choose 3}{35 + s \choose 2}}                   {{48 \choose 5}}

of making the flush by the river. For hands with flush draws in two suits (suit type aabb), multiply the probability of making a flush with two suited cards (s = 2) by the two suits to give probabilities of 2Pf, 2Pt and 2Pr.

The suit types with at least two of the same suit have the following probabilities of making a flush on the flop, turn and river.

Suit type Make on flop Make by turn Make by river
Probability Odds Probability Odds Probability Odds
aaaa 0.0048566 204.90 : 1 0.01748381 56.20 : 1 0.0392944 24.45 : 1
aaab 0.0069380 143.13 : 1 0.02451434 39.79 : 1 0.0540745 17.49 : 1
aabb 0.0190796 51.41 : 1 0.06614246 14.12 : 1 0.1431545 5.99 : 1
aabc 0.0095398 103.82 : 1 0.03307123 29.24 : 1 0.0715772 12.97 : 1

[edit] See also

Poker topics:

Math and probability topics:

[edit] Notes

  1. ^  The odds presented in this article use the notation x : 1 which translates to x to 1 odds against the event happening. The odds are calculated from the probability p of the event happening using the formula: odds = [(1 − p) ÷ p] : 1, or odds = [(1 ÷ p) − 1] : 1. Another way of expressing the odds x : 1 is to state that there is a 1 in x+1 chance of the event occurring or the probability of the event occurring is 1 ÷ (x + 1). So for example, the odds of a role of a fair six-sided die coming up three is 5 : 1 against because there are 5 chances for a number other than three and 1 chance for a three; alternatively, this could be described as a 1 in 6 chance or \begin{matrix}\frac{1}{6}\end{matrix} probability of a three being rolled because the three is 1 of 6 equally-likely possible outcomes.

[edit] References

  1. ^ Edward Hutchison. Hutchison Omaha Point System (HTML). Retrieved on 2006-11-02.
  2. ^ Edward Hutchison (December, 1997). Hutchison Point Count System for Omaha High-Low Poker (HTML). Canadian Poker Monthly. Retrieved on 2006-11-02.
  3. ^ Ian Berry. Mr Hutchison, You Suck.... (HTML). bet-the-pot. Retrieved on 2006-11-02.
  4. ^ Brian Alspach (2003). Rank Sets and Straights. Retrieved on 2006-10-30.

[edit] External links

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu