Privacy Policy Cookie Policy Terms and Conditions Natural units - Wikipedia, the free encyclopedia

Natural units

From Wikipedia, the free encyclopedia

In physics, natural units are physical units of measurement defined in terms of universal physical constants in such a manner that some chosen physical constants take on the numerical value of one when expressed in terms of a particular set of natural units. Natural units are intended to elegantly simplify particular algebraic expressions appearing in physical law or to normalize some chosen physical quantities that are properties of universal elementary particles and that may be reasonably believed to be constant. However, what may be believed and forced to be constant in one system of natural units can very well be allowed or even assumed to vary in another natural unit system. Natural units are natural because the origin of their definition comes only from properties of nature and not from any human construct. Planck units are often, without qualification, called "natural units" but are only one system of natural units among other systems. Planck units might be considered unique in that the set of units are not based on properties of any prototype, object, or particle but are based only on properties of free space.

As with any set of base units or fundamental units the base units of a set of natural units will include definitions and values for length, mass, time, temperature, and electric charge. Some physicists have not recognized temperature as a fundamental dimension of physical quantity since it simply expresses the energy per degree of freedom of a particle which can be expressed in terms of energy (or mass, length, and time). Virtually every system of natural units normalizes the Boltzmann constant to k=1, which can be thought of as simply another expression of the definition of the unit temperature. In addition, some physicists recognize electric charge as a separate fundamental dimension of physical quantity, even if it has been expressed in terms of mass, length, and time in unit systems such as the electrostatic cgs system. Virtually every system of natural units normalize the permittivity of free space to ε0=(4π)-1, which can be thought of as an expression of the definition of the unit charge.

Contents

[edit] Candidate physical constants used in natural unit systems

The candidate physical constants to be normalized are chosen from those in the following table. Note that only a smaller subset of the following can be normalized in any one system of units without contradiction in definition (e.g., me and mp cannot both be defined as the unit mass in a single system).

Constant Symbol Dimension
speed of light in vacuum { c } \ L T-1
Gravitational constant { G } \ M-1L3T-2
Dirac's constant or "reduced Planck's constant" \hbar=\frac{h}{2 \pi} where {h} \ is Planck's constant ML2T-1
Coulomb force constant \frac{1}{4 \pi \epsilon_0} where { \epsilon_0 } \ is the permittivity of free space Q-2 M L3 T-2
Elementary charge e \ Q
Electron mass m_e \ M
Proton mass m_p \ M
Boltzmann constant { k } \ ML2T-2Θ-1

Dimensionless fundamental physical constants such as the fine-structure constant

\alpha \equiv \frac{e^2}{\hbar c (4 \pi \epsilon_0)} = \frac{1}{137.03599911}

cannot take on a different numerical value no matter what system of units are used. Judiciously choosing units can only normalize physical constants that have dimension. Since α is a fixed dimensionless number not equal to 1, it is not possible to define a system of natural units that will normalize all of the physical constants that comprise α. Any 3 of the 4 constants: c, \hbar, e, or 4πε0, can be normalized (leaving the remaining physical constant to take on a value that is a simple function of α, alluding to the fundamental nature of the fine-structure constant) but not all 4.

[edit] Geometrized units

c = 1 \
G = 1 \

The Geometrized unit system is not a completely defined or unique system. In this system, the base physical units are chosen so that the speed of light and the gravitational constant are set equal to unity leaving latitude to also set some other constant such as the Boltzmann constant and Coulomb force constant equal to unity:

k = 1 \
\frac{1}{4 \pi \epsilon_0} = 1

If Dirac's constant (also called the "reduced Planck's constant") is also set equal to unity,

\hbar = 1 \

then geometrized units are identical to Planck units.

[edit] Planck units

Main article: Planck units
Quantity Expression
Length (L) l_P = \sqrt{\frac{\hbar G}{c^3}}
Mass (M) m_P = \sqrt{\frac{\hbar c}{G}}
Time (T) t_P = \sqrt{\frac{\hbar G}{c^5}}
Electric charge (Q) q_P = \sqrt{\hbar c (4 \pi \epsilon_0)}
Temperature (Θ) T_P = \sqrt{\frac{\hbar c^5}{G k^2}}
c = 1 \
G = 1 \
\hbar = 1 \
\frac{1}{4 \pi \epsilon_0} = 1
k = 1 \
e = \sqrt{\alpha} \

The physical constants that Planck units normalize are properties of free space and not properties (such as charge, mass, size or radius) of any object or elementary particle (that would have to be arbitrarily chosen). Being so, the Planck units are defined independently of the elementary charge which comes out to be the square root of the fine-structure constant, √α if measured in terms of Planck units. In Planck units a conceivable variation in the value of the dimensionless α would be considered to be due to a variation in the elementary charge.



[edit] Stoney units

Quantity Expression
Length (L) l_S = \sqrt{\frac{G e^2}{c^4 (4 \pi \epsilon_0)}}
Mass (M) m_S = \sqrt{\frac{e^2}{G (4 \pi \epsilon_0)}}
Time (T) t_S = \sqrt{\frac{G e^2}{c^6 (4 \pi \epsilon_0)}}
Electric charge (Q) q_S = e \
Temperature (Θ) T_S = \sqrt{\frac{c^4 e^2}{G (4 \pi \epsilon_0) k^2}}
c = 1 \
G = 1 \
e = 1 \
\frac{1}{4 \pi \epsilon_0} = 1
k = 1 \
\hbar = \frac{1}{\alpha} \

Proposed by George Stoney in 1881. Stoney units fix the elementary charge and allow Planck's constant to float. They can be obtained from Planck units with the substitution:

\hbar \leftarrow \alpha \hbar = \frac{e^2}{c (4 \pi \epsilon_0)}.

This removes Planck's constant from the definitions and the value it takes on in Stoney units is the reciprocal of the fine-structure constant, 1/α. In Stoney units a conceivable variation in the value of the dimensionless α would be considered to be due to a variation in Planck's constant.

[edit] "Schrödinger" units

Quantity Expression
Length (L) l_{\psi} = \sqrt{\frac{\hbar^4 G (4 \pi \epsilon_0)^3}{e^6}}
Mass (M) m_{\psi} = \sqrt{\frac{e^2}{G (4 \pi \epsilon_0)}}
Time (T) t_{\psi} = \sqrt{\frac{\hbar^6 G (4 \pi \epsilon_0)^5}{e^{10}}}
Electric charge (Q) q_{\psi} = e \
Temperature (Θ) T_{\psi} = \sqrt{\frac{e^{10}}{\hbar^4 (4 \pi \epsilon_0)^5 G k^2}}
e = 1 \
G = 1 \
\hbar = 1 \
\frac{1}{4 \pi \epsilon_0} = 1
k = 1 \
c = \frac{1}{\alpha} \

The name coined by Michael Duff[1]. They can be obtained from Planck units with the substitution:

c \leftarrow \alpha c = \frac{e^2}{\hbar (4 \pi \epsilon_0)}.

This removes the speed of light from the definitions and the value it takes on in Schrödinger units is the reciprocal of the fine-structure constant, 1/α. In Schrödinger units a conceivable variation in the value of the dimensionless α would be considered to be due to a variation in the speed of light.

[edit] Atomic units (Hartree)

Main article: Atomic units
Quantity Expression
Length (L) l_A = \frac{\hbar^2 (4 \pi \epsilon_0)}{m_e e^2}
Mass (M) m_A = m_e \
Time (T) t_A = \frac{\hbar^3 (4 \pi \epsilon_0)^2}{m_e e^4}
Electric charge (Q) q_A = e \
Temperature (Θ) T_A = \frac{m_e e^4}{\hbar^2 (4 \pi \epsilon_0)^2 k}
e = 1 \
m_e = 1 \
\hbar = 1 \
\frac{1}{4 \pi \epsilon_0} = 1
k = 1 \
c = \frac{1}{\alpha} \

First proposed by Douglas Hartree to simplify the physics of the Hydrogen atom. Michael Duff[2] calls these "Bohr units". The unit energy in this system is the total energy of the electron in the first circular orbit of the Bohr atom and called the Hartree energy, Eh. The unit velocity is the velocity of that electron, the unit mass is the electron mass, me, and the unit length is the Bohr radius, a_0 = 4 \pi \epsilon_0\hbar^2/m_e e^2 \. They can be obtained from "Schrödinger" units with the substitution:

G \leftarrow \alpha G \left( \frac{m_P}{m_e} \right)^2 = \frac{e^2}{4 \pi \epsilon_0 m_e^2} \.

This removes the speed of light (as well as the gravitational constant) from the definitions and the value it takes on in atomic units is the reciprocal of the fine-structure constant, 1/α. In atomic units a conceivable variation in the value of the dimensionless α would be considered to be due to a variation in the speed of light.

[edit] Electronic system of units

Quantity Expression
Length (L) l_e = \frac{e^2}{c^2 m_e (4 \pi \epsilon_0)}
Mass (M) m_e = m_e \
Time (T) t_e = \frac{e^2}{c^3 m_e (4 \pi \epsilon_0)}
Electric charge (Q) q_e = e \
Temperature (Θ) T_e = \frac{m_e c^2}{k}
c = 1 \
e = 1 \
m_e = 1 \
\frac{1}{4 \pi \epsilon_0} = 1
k = 1 \
\hbar = \frac{1}{\alpha} \

Michael Duff[3] calls these "Dirac units". They can be obtained from Stoney units with the substitution:

G \leftarrow \alpha G \left( \frac{m_P}{m_e} \right)^2 = \frac{e^2}{4 \pi \epsilon_0 m_e^2} \.

They can be also obtained from Atomic units with the substitution:

\hbar \leftarrow \alpha \hbar = \frac{e^2}{c (4 \pi \epsilon_0)}.

Similarly to Stoney units, a conceivable variation in the value of α would be considered to be due to a variation in Planck's constant.

[edit] Quantum electrodynamical system of units (Stille)

Quantity Expression
Length (L) l_{\mathrm{QED}} = \frac{e^2}{c^2 m_p (4 \pi \epsilon_0)}
Mass (M) m_{\mathrm{QED}} = m_p \
Time (T) t_{\mathrm{QED}} = \frac{e^2}{c^3 m_p (4 \pi \epsilon_0)}
Electric charge (Q) q_{\mathrm{QED}} = e \
Temperature (Θ) T_{\mathrm{QED}} = \frac{m_p c^2}{k}
c = 1 \
e = 1 \
m_p = 1 \
\frac{1}{4 \pi \epsilon_0} = 1
k = 1 \
\hbar = \frac{1}{\alpha} \

Similar to the electronic system of units except that the proton mass is normalized rather that the electron mass. Also a conceivable variation in the value of α would be considered to be due to a variation in Planck's constant.

[edit] See also

[edit] External links

Planck's natural units
Base Planck units: Planck time  | Planck length  | Planck mass  | Planck charge  | Planck temperature
Derived Planck units: Planck energy  | Planck force  | Planck power  | Planck density  | Planck angular frequency  | Planck pressure  | Planck current  | Planck voltage  | Planck impedance
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu