Magnetic bearing
From Wikipedia, the free encyclopedia
A magnetic bearing is a bearing which supports a load using magnetic levitation. Magnetic bearings support moving machinery without physical contact, for example, they can levitate a rotating shaft and permit relative motion without friction or wear. They are in service in such industrial applications as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. They are also used in the Zippe-type centrifuge used for uranium enrichment.
Contents |
[edit] Description
It is difficult to build a magnetic bearing using permanent magnets due to the limitations imposed by Earnshaw's theorem, and techniques using diamagnetic materials are relatively undeveloped. As a result, most magnetic bearings require continuous power input and an active control system to hold the load stable. Because of this complexity, the magnetic bearings also typically require some kind of back-up bearing in case of power or control system failure
[edit] Applications
Magnetic bearing advantages include very low and predictable friction, ability to run without lubrication and in a vacuum. Magnetic bearings are commonly used in watt-hour meters used by electric utilities to measure home power consumption. Magnetic bearings are also used in high-precision instruments and to support equipment in a vacuum, for example in flywheel energy storage systems. A flywheel in a vacuum has very low windage losses, but conventional bearings usually fail quickly in a vacuum due to poor lubrication. Magnetic bearings are also used to support maglev trains in order to get low noise and smooth ride by eliminating physical contact surfaces. Disadvantages include high cost, and relatively large size.
[edit] History
The evolution of active magnetic bearings may be traced through the patents issued in this area. The table below lists several early patents for active magnetic bearings. Earlier patents for magnetic suspensions can be found but are excluded here because they consist of assemblies of permanent magnets of problematic stability per Earnshaw's Theorem.
Early active magnetic bearing patents were assigned to Jesse Beams[1][2] at the University of Virginia during World War II and are concerned with ultracentrifuges for purification of the isotopes of various elements for the manufacture of the first nuclear bombs, but the technology did not mature until the advances of solid-state electronics and modern computer-based control technology with the work of Habermann[3] and Schweitzer[4]. The first international symposium for active magnetic bearing technology was held in 1988. Since then there have been nine succeeding symposia. The article by Kasarda[5] reviews the history of AMB in depth. She notes that the first commercial application of AMB’s was with turbomachinery. The AMB allowed the elimination of oil reservoirs on compressors for the NOVA Gas Transmission Ltd. gas pipelines in northern Canada. This reduced the fire hazard allowing a substantial reduction in insurance costs. The French company S2M, founded in 1976, was the first to commercially market AMB’s.
|
|||
---|---|---|---|
Inventor(s) | Year | Patent No. | Invention Title |
Beams, Holmes | 1941 | 2,256,937 | Suspension of Rotatable Bodies |
Beams | 1954 | 2,691,306 | Magnetically Supported Rotating Bodies |
Beams | 1962 | 3,041,482 | Apparatus for Rotating Freely Suspended Bodies |
Beams | 1965 | 3,196,694 | Magnetic Suspension System |
Wolf | 1967 | 3,316,032 | Poly-Phase Magnetic Suspension Transformer |
Lyman | 1971 | 3,565,495 | Magnetic Suspension Apparatus |
Habermann | 1973 | 3,731,984 | Magnetic Bearing Block Device for Supporting a Vertical Shaft Adapted for Rotating at High Speed |
Habermann, Loyen, Joli, Aubert | 1974 | 3,787,100 | Devices Including Rotating Members Supported by Magnetic Bearings |
Habermann, Brunet | 1977 | 4,012,083 | Magnetic Bearings |
Habermann, Brunet, LeClére | 1978 | 4,114,960 | Radial Displacement Detector Device for a Magnetic Bearings |
[edit] References
- ^ Beams, J. , Production and Use of High Centrifugal Fields, Science, Vol. 120, (1954)
- ^ Beams, J. , Magnetic Bearings, Paper 810A, Automotive Engineering Conference, Detroit, Michigan, USA, SAE (Jan. 1964)
- ^ Habermann,H. , Liard, G. Practical Magnetic Bearings , IEEE Spectrum, Vol. 16, No. 9, (September 1979)
- ^ Schweitzer, G. , Characteristics of a Magnetic Rotor Bearing for Active Vibration Control, Paper C239/76, First International Conference on Vibrations in Rotating Machinery, (1976)
- ^ Kasarda, M. An Overview of Active Magnetic Bearing Technology and Applications, The Shock and Vibration Digest, Vol.32, No. 2: A Publication of the Shock and Vibration Information Center, Naval Research Laboratory, (March 2000)
- Schweitzer, G (2002). "Active Magnetic Bearings – Chances and Limitations" (PDF).
- Chiba, A., Fukao, T., Ichikawa, O., Oshima, M., Takemoto, M., Dorrel, D. (2005). Magnetic Bearings and Bearingless Drives. Newnes.
- Maslen, E. H. (2000). Magnetic Bearings (PDF).
[edit] External links
Manufacturers: