Privacy Policy Cookie Policy Terms and Conditions Generalized continued fraction - Wikipedia, the free encyclopedia

Generalized continued fraction

From Wikipedia, the free encyclopedia

In mathematics, a generalized continued fraction is a generalization of the concept of continued fraction in which the numerators are allowed to differ from unity. They are useful in the theory of infinite summation of series.

A generalized continued fraction is an expression such as:

x = \cfrac{b_1}{a_1\pm\cfrac{b_2}{a_2\pm\cfrac{b_3}{a_3+\,\cdots}}}

where all symbols are integers. A convenient notation is

\frac{b_1}{a_1\pm}\, \frac{b_2}{a_2\pm}\, \frac{b_3}{a_3\pm}\ldots

The successive convergents are formed in a similar way to those of continued fractions. If all \pm signs are positive,

x_1=\frac{b_1}{a_1}\qquad x_2=\frac{a_2b_1}{a_2a_1+b_2}\qquad x_3=\frac{a_3a_2b_1+b_3b_1}{a_3(a_2a_1+b_2)+b_3a_1}

If we write xn = pn / qn, then

p_{n+1}=a_{n+1}p_n+b_{n+1}p_{n-1},\qquad q_{n+1}=a_{n+1}q_n+b_{n+1}q_{n-1}

(if the signs are negative, replace "+" with "-" in the above formula).

If the positive sign is chosen, then (as for ordinary continued fractions) all convergents of odd order are greater than x but uniformly decrease; and all convergents of even order are less than x but uniformly increase.

Thus odd convergents tend to a limit, and even convergents tend to a limit. If the limits are not equal, the continued fraction is said to be oscillating. To determine whether the limits are equal, define

s_n= \frac{a_na_{n+1}}{b_{n+1}}.

Then if \exists\epsilon>0 and integer n0 such that n > n0 implies sn > ε, then the limits are equal and the continued fraction has a definite value.

Contents

[edit] Generalized continued fractions and series

The following identity is due to Euler:

a_0+a_0a_1+a_0a_1a_2+a_0a_1a_2a_3+\cdots +a_0a_1a_2\cdots a_n = \frac{a_0}{1-}\, \frac{a_1}{1+a_1-}\, \frac{a_2}{1+a_2-}\, \frac{a_3}{1+a_3-}\cdots \frac{a_{n}}{1+a_n}.

From this follows many other results like

\frac{1}{u_1}+ \frac{1}{u_2}+ \frac{1}{u_3}+ \cdots+ \frac{1}{u_n} = \frac{1}{u_1-}\, \frac{u_1^2}{u_1+u_2-}\, \frac{u_2^2}{u_2+u_3-}\cdots \frac{u_{n-1}^2}{u_{n-1}+u_n}.

and

\frac{1}{a_0}+\frac{x}{a_0a_1}+\frac{x^2}{a_0a_1a_2}+ \cdots +\frac{x^n}{a_0a_1a_2\ldots a_n} = \frac{1}{a_0-}\, \frac{a_0x}{a_1+x-}\, \frac{a_1x}{a_2+x-}\, \cdots \frac{a_{n-1}x}{a_n-x}.

[edit] Examples

\log(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots= \frac{x}{1+}\, \frac{1^2x}{2-x+}\, \frac{2^2x}{3-2x+}\, \frac{3^2x}{4-3x+}\cdots
\exp(x)=1+x+\frac{x^2}{2!}+\cdots= 1+\frac{x}{1-}\, \frac{x}{x+2-}\, \frac{2x}{x+3-}\, \frac{3x}{x+4-}\, \cdots
\exp(x)=\frac{1}{1-}\, \frac{x}{1+}\, \frac{x}{2-}\, \frac{x}{3+}\, \frac{x}{2-}\, \frac{x}{5+}\, \frac{x}{2-}\cdots
\pi=3+\, \frac{1}{6+}\, \frac{9}{6+}\, \frac{25}{6+}\, \frac{49}{6+}\, \frac{81}{6+}\, \frac{121}{6+}\cdots.

[edit] Higher dimensions

Another meaning for generalized continued fraction would be a generalisation to higher dimensions. For example, there is a close relationship between the continued fraction for the irrational real number α, and the way lattice points in two dimensions lie to either side of the line y = αx. Therefore one can ask for something relating to lattice points in three or more dimensions. One reason to study this area is to quantify the mathematical coincidence idea; for example, for monomials in several real numbers, take the logarithmic form and consider how small it can be.

There have been numerous attempts, in fact, to construct a generalised theory. Two notable ones are those of Georges Poitou and George Szekeres.

[edit] References

  • William B. Jones and W.J. Thron, "Continued Fractions Analytic Theory and Applications", Addison-Wesley, 1980. (Covers both analytic theory and history).
  • Lisa Lorentzen and Haakon Waadeland, "Continued Fractions with Applications", North Holland, 1992. (Covers primarily analytic theory and some arithmetic theory).
  • Oskar Perron, B.G. Teubner, "Die Lehre Von Den Kettenbruchen" Band I, II, 1954.
  • George Szekeres, "Multidimensional Continued Fractions." G.Ann. Univ. Sci. Budapest Eotvos Sect. Math. 13, 113-140, 1970.
  • H.S. Wall, "Analytic Theory of Continued Fractions", Chelsea, 1973.

[edit] External links

In other languages
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu