Privacy Policy Cookie Policy Terms and Conditions Einstein solid - Wikipedia, the free encyclopedia

Einstein solid

From Wikipedia, the free encyclopedia

Einstein solid is a model of a solid based on two assumptions:

While the first assumption is quite accurate, the second is not. If atoms did not interact with one another, sound waves would not propagate through solids.

[edit] Heat Capacity

Heat Capacity of an Einstein Solid as a function of temperature.  Experimental value of 3Nk is recovered at high temperatures.
Enlarge
Heat Capacity of an Einstein Solid as a function of temperature. Experimental value of 3Nk is recovered at high temperatures.

Heat capacity is, perhaps, one of the most important properties of solids and can be expressed like so

C_V = \left({\partial U\over\partial T}\right)_V

T, the temperature of the system, can be found in from entropy

{1\over T} = {\partial S\over\partial U}

To find the entropy consider a solid made of N quantum harmonic oscillators (hereafter SHOs). Because x, y, and z modes of an SHO are not coupled (they don't interact, really -- they don't), one can work with 3N oscillators instead.

N^{\prime} = 3N

Possible energies of an SHO are given by

E_n = \hbar\omega\left(n+{1\over2}\right)

or, in other words, the energy levels are evenly spaced and one can define a quantum of energy

\epsilon = \hbar\omega

which is the smallest and only amount by which the energy of SHO can be incremented. Next, we must compute the multiplicity of the system. That is, compute the number of ways to distribute q quanta of energy among N^{\prime} SHOs. This task becomes simpler if one thinks of distributing q pebbles over N^{\prime} boxes

Image:ES1.jpg

or separating stacks of pebbles with N^{\prime}-1 partitions

Image:ES2.jpg

or arranging q pebbles and N^{\prime}-1 partitions

Image:ES3.jpg

The last picture is the most telling. The number of arrangements of nobjects is n!. So the number of possible arrangements of q pebbles and N^{\prime}-1 partitions is \left(q+N^{\prime}-1\right)!. However, if partition #2 and partition #5 trade places, no one would notice. The same argument goes for quanta. To obtain the number of possible distinguishable arrangements one has to divide the total number of arrangements by the number of indistinguishable arrangements. There are q! identical quanta arrangements, and (N^{\prime}-1)! identical partition arrangements. Therefore, multiplicity of the system is given by

\Omega = {\left(q+N^{\prime}-1\right)!\over q! (N^{\prime}-1)!}

which, as mentioned before, is the number of ways to deposit q quanta of energy into N^{\prime}-1 oscillators. Entropy of the system has the form

S/k = \ln\Omega = \ln{\left(q+N^{\prime}-1\right)!\over q! (N^{\prime}-1)!}

N^{\prime} is a huge number -- subtracting one from it has no overall effect whatsoever

S/k \approx \ln{\left(q+N^{\prime}\right)!\over q! N^{\prime}!}

With the help of Stirling's approximation, entropy can be simplified

S/k \approx \left(q+N^{\prime}\right)\ln\left(q+N^{\prime}\right)-N^{\prime}\ln N^{\prime}-q\ln q

Total energy of the solid is given by

U = {N^{\prime}\epsilon\over2} + q\epsilon

We are now ready to compute the temperature

{1\over T} = {\partial S\over\partial U} = {\partial S\over\partial q}{dq\over dU} = {1\over\epsilon}{\partial S\over\partial q} = {k\over\epsilon} \ln\left(1+N^{\prime}/q\right)

Inverting this formula to find U

U = {N^{\prime}\epsilon\over2} + {N^{\prime}\epsilon\over e^{\epsilon/kT}-1}

Differentiating with respect to temperature to find CV

C_V = {\partial U\over\partial T} = {N^{\prime}\epsilon^2\over k T^2}{e^{\epsilon/kT}\over \left(e^{\epsilon/kT}-1\right)^2}

or

C_V = 3Nk\left({\epsilon\over k T}\right)^2{e^{\epsilon/kT}\over \left(e^{\epsilon/kT}-1\right)^2}

While Einstein model of the solid predicts the heat capacity accurately at high temperatures, it noticeably deviates from experimental values at low temperatures. See Debye model for accurate low-temperature heat capacity calculation.

[edit] Heat Capacity (alternative derivation)

Heat capacity can be obtained much quicker through the use of partition function of an SHO.

Z = \sum_{n=0}^{\infty} e^{-E_n/kT}

where

E_n = \epsilon\left(n+{1\over2}\right)

substituting this into the partition function formula yields

Z = \sum_{n=0}^{\infty} e^{-\epsilon\left(n+1/2\right)/kT} = e^{-\epsilon/2kT} \sum_{n=0}^{\infty} e^{-n\epsilon/kT}=e^{-\epsilon/2kT} \sum_{n=0}^{\infty} \left(e^{-\epsilon/kT}\right)^n =
= {e^{-\epsilon/2kT}\over 1-e^{-\epsilon/kT}} = {1\over e^{\epsilon/2kT}-e^{-\epsilon/2kT}} = {1\over 2 \sinh\left({\epsilon\over 2kT}\right)}

This is the partition function of one SHO. Because, statistically, heat capacity, energy, and entropy of the solid are equally distributed among its atoms (SHOs), we can work with this partition function to obtain those quantities and then simply multiply them by N^{\prime} to get the total. Next, let's compute the average energy of each oscillator

\langle E\rangle = u = -{1\over Z}\partial_{\beta}Z

where

\beta = {1\over kT}

therefore

u = -2 \sinh\left({\epsilon\over 2kT}\right){-\cosh\left({\epsilon\over 2kT}\right)\over 2 \sinh^2\left({\epsilon\over 2kT}\right)}{\epsilon\over2} = {\epsilon\over2}\coth\left({\epsilon\over 2kT}\right)

Heat capacity of one oscillator is then

C_V = {\partial U\over\partial T} = -{\epsilon\over2} {1\over \sinh^2\left({\epsilon\over 2kT}\right)}\left(-{\epsilon\over 2kT^2}\right) = k \left({\epsilon\over 2 k T}\right)^2 {1\over \sinh^2\left({\epsilon\over 2kT}\right)}

Heat capacity of the entire solid is given by CV = 3NCV

C_V = 3Nk\left({\epsilon\over 2 k T}\right)^2 {1\over \sinh^2\left({\epsilon\over 2kT}\right)}
In other languages
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu