Privacy Policy Cookie Policy Terms and Conditions Delta function potential - Wikipedia, the free encyclopedia

Delta function potential

From Wikipedia, the free encyclopedia

In quantum mechanics the delta function potential provides a simple example of a situation that can be solved with the Schrodinger equation. It is a one-dimensional potential and is given by:

V(x) = -a \delta (x) \,

That is, it is a potential well which is zero everywhere except at x = 0.

Contents

[edit] Bound solution

The graph of the bound state wavefunction solution to the delta function potential is continuous everywhere, but it's derivative is not at x=0.
Enlarge
The graph of the bound state wavefunction solution to the delta function potential is continuous everywhere, but it's derivative is not at x=0.

When the potential is of the form above, the solution of the Schrodinger equation shows that the bound state wavefunction is:

\psi = \frac{\sqrt{a m}}{\hbar} e^{-ma|x|/\hbar^2}

And the energy can have only one value, and that is:

E = \frac{-m a^2}{2 \hbar^2}

[edit] Derivation of bound solution

We are interesting in finding the wave function for a bound state of this delta function potential. The wave function will be a solution to the Schrodinger equation:

-\frac{\hbar^2}{2 m} \frac{d^2 \psi}{d x^2} + V(x) \psi = E \psi where
\hbar = \frac{h}{2 \pi}
m \, is the mass of the particle
\psi\, is the (complex valued) wavefunction that we want to find
V\left(x\right)\, is a function describing the potential at each point x and
E\, is the energy, a real number.

In this case V is this delta function potential mentioned above, and it divides the space into two regions. As it will turn out, the solution to the Schrodinger equation will be a different function on each side:

\psi (x) =  \begin{cases} \psi_1 (x) & \mbox{for} \ \ x<0, \\ \psi_2 (x) & \mbox{for} \ \ 0<x \end{cases}

But one should expect a symmetrical answer for a bound state, and that will be shown to be true.

[edit] Left side of the potential

In the region to the left of the delta function, the potential is zero so the Schrodinger equation takes the form:

-\frac{\hbar^2}{2 m} \frac{d^2 \psi_1}{d x^2} = E \psi_1

Rearanging this,

\frac{d^2 \psi_1}{d x^2} + \frac{2 m E}{\hbar^2} \psi_1 = 0

Now, for a bound state the energy, E, of the particle must be less than zero. So to make it more clear what the solution will be, write this as:

\frac{d^2 \psi_1}{d x^2} - \frac{2 m |E|}{\hbar^2} \psi_1 = 0

The solution to differential equations of this form involve the exponential:

\psi_1 = A e^{cx} + B e^{-cx} \,
where in this situation,
c = \frac{\sqrt{2m|E|}}{\hbar}

We can eliminate the second term in ψ1 because in this left-hand region it would blow up as x approaches -\infty.

So, in this region,

\psi_1 = A e^{cx} \,

[edit] Right side of the potential

In the region to the right of the potential, the Schrodinger equation takes on the same form in the previous section,

\frac{d^2 \psi_2}{d x^2} - \frac{2 m |E|}{\hbar^2} \psi_2 = 0

The only difference now is we have to keep the exponentially decreasing term - the other one would blow up as x approaches \infty.

So,

\psi_2 = B e^{-cx} \,

[edit] Energy of the bound state

So far, it has been shown that the solution must have the form

\psi (x) =  \begin{cases} A e^{cx} & \mbox{for} \ \ x<0, \\ B e^{-cx} & \mbox{for} \ \ 0<x \end{cases}.
where
c = \frac{\sqrt{2m|E|}}{\hbar}, and
A and B are yet to be determined.

One can find out more about the solution by applying two important rules about wavefunctions:

  • A wavefunction, ψ, must be continuous everywhere and
  • Its derivatives, \frac{d\psi}{dx}, must be continuous except where the potential blows up (goes to infinity).

Putting the first rule into math:

\psi_1 (x=0) = \psi_2 (x=0) \,
A e^{0} = B e^{-0} \,

Therefore,

A = B \,

The last trick, is to integrate the Schrodinger equation around x=0, but do so over a really small range:

-\frac{\hbar^2}{2 m} \int_{-\epsilon}^{\epsilon} \frac{d^2 \psi}{d x^2}\, dx + \int_{-\epsilon}^{\epsilon}V(x) \psi \, dx = E \int_{-\epsilon}^{\epsilon} \psi \, dx
where ε is a really small number.

The right-hand side is

E \int_{-\epsilon}^{\epsilon} \psi \, dx \approx E \cdot 2 \epsilon \cdot \psi (x=0)

and this is a more accurate approximation the smaller ε is. In the limit of \epsilon \to 0 this just goes to 0.

The left-hand side is

-\frac{\hbar^2}{2 m} \left( \frac{d\psi}{dx}\bigg|_{\epsilon} - \frac{d\psi}{dx}\bigg|_{-\epsilon} \right) -a \int_{-\epsilon}^{\epsilon}\delta(x) \psi \, dx = 0

Which, after rearanging is

\frac{d\psi}{dx}\bigg|_{\epsilon} - \frac{d\psi}{dx}\bigg|_{-\epsilon} = -\frac{2 m a}{\hbar^2} \psi (0).

Let ε get closer and closer to zero, and remember that to the left of the delta potential ψ = ψ1 and on the right of it ψ = ψ2:

\psi_2' (0) - \psi_1' (0) = -\frac{2 m a}{\hbar^2} \psi (0)
-A c - A c = -\frac{2 m a}{\hbar^2} A

Thus we have a relationship between the constant c in the wavefunction and the "strength" of the delta function potential:

c = \frac{m a}{\hbar^2}

But don't forget that c is related to the energy, so plugging that in,

\frac{m a}{\hbar^2} = \frac{\sqrt{2m|E|}}{\hbar}

This condition shows the one allowed energy, which is:

E = \frac{-ma^2}{2 \hbar^2}

[edit] Normalization

Finally, to figure out what the constant A out front of the wavefunction is, one can normalize the wavefunction (i.e. make sure the probability of finding the particle somewhere equals 1):

\int_{-\infty}^{\infty} \psi^* \psi \, dx = 2 A^2 \int_{0}^{\infty} e^{-2 c x} \, dx = \frac{2 A^2}{2 c}

This has to equal one, so

A = \sqrt{c} = \frac{\sqrt{ma}}{\hbar}

This can be plugged back into the wavefunction and we find:

\psi (x) =  \begin{cases} \frac{\sqrt{ma}}{\hbar} e^{\frac{max}{\hbar^2}} & \mbox{for} \ \ x<0, \\ \frac{\sqrt{ma}}{\hbar} e^{-\frac{max}{\hbar^2}} & \mbox{for} \ \ 0<x \end{cases}.

Which can be written more compactly as

\psi (x) = \frac{\sqrt{ma}}{\hbar} e^{-ma|x| / \hbar^2}

[edit] See also

[edit] References

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu