Talk:Cellular respiration
From Wikipedia, the free encyclopedia
Contents |
[edit] Original author's note
This pages content comes from what I've learned in high school biology. Some of it may be incorrect. Also, I'm guessing that there's just a little more that could be added. By all means, do so (of course, that's what the 'pedia is all about). --bdesham
[edit] Table / flow chart
I've added a basic diagram covering the subprocesses of aerobic respiration.I've done it as a table rather than uploading the whole thing as a .png so that others can easily modify the info. However looking at the edit page the table looks complicated and offputting. If anyone wants to amend the content of the diagram but is put off editing the table by all the ugly HTML by all means let me know on my talk page and I will edit the table for you. Theresa knott 13:56 6 Jun 2003 (UTC)
- Yeah, that table is kinda offputting. I've made a flow chart in PNG format; if anyone needs/wants to change it, visit User Talk:Bdesham and say so. --bdesham 19:43 9 Jun 2003
[edit] Incorrect number of ATP?
I wasn't going to say anything, since my knowledge is limited to high school bio, but when I see this page was also made with that knowledge...we were taught a net gain of 36 ATP, not 38...perhaps you forgot to subtract the 2 used in glycolysis? EDIT: In fact, the glycolysis article agrees with me--kreb's and the ETC makes 34 ATP/glucose. 24.218.58.113 19:39, 26 Nov 2004 (UTC). Further edit: the previous was me, I am a new user. After referencing my biology textbook, the real answer (I believe) is that 38 ATP is the *optimal* gain, generally not realized due to such losses as the energy needed to move pyruvate into the mitochondria. I will make a minor edit to reflect this; please correct me if this is the wrong action. Endersdouble 19:47, 26 Nov 2004 (UTC)
- Hmm... looking back at my notes from HS Biology, they say that the total gain of ATP from glycolysis and aerobic respiration is 38 (2 from glycolysis and 36 from aerobic respiration). I googled for "cellular respiration", though, and I found [1]. If you look under the "How many ATPs?" section, it says that the theoretical total is 38, but that due to conditions the number rarely exceeds 30. I'll look into this more when I have time. Cheers! --bdesham 19:49, 26 Nov 2004 (UTC)
This is how it works: In vitro (in a test tube with every ezymers, substrates at the right conditions), a biochemist can make 38 molecues of ATP from a molecule of glucose. However, in a eucaryotic cell, Glycolysis (which produces ATP and NADH)occurs in the cytoplasm while respiration (and the recycling of NADH) occurs inside the mitochomdria. And this is the problem: -- All the NAD in the cytoplasm would become NADH and glycolysis will stop due the the lack of NAD; Therefore, NADH in the cytoplasm must be transported into the mitochondria to unload its protons and electons (i.e NADH--> NAD). This transporting cost 2 ATP; thereforem in eucaryotes, we said they produce 36 ATP. However, these type of calculation is meaningless-- If all glucose are committed to produce ATP and CO2, all living organisms will be the same- pails of ATP! The fact is, a cell will not produce a single molecue of ATP more than it need.
- Ok so looking at this it all fine and dandy but im taking bio right now and im preety sure it is 36 ATP but then aging maby im wrong this seems to be quite a perdiciment. —The preceding unsigned comment was added by 67.58.207.41 (talk • contribs) .
- 38 and 36 are purely theoretical numbers; read the section Theoretical_yields. But if we have to go with 36 or 38 then 36 is a more accurate estimate (but still pretty bad) of the most ATP that can be produced from a molecule of glucose. David D. (Talk) 15:36, 3 October 2006 (UTC)
[edit] Should this be merged with "Glycolysis?"
Reading this article and Glycolysis, I've noticed that they duplicate a lot of information. Should they be merged?
- I think it would be better to de-emphasise glycolysis on this page. This page should be an overview whereas the glycolysis page should be more detailed. David D. (Talk) 20:06, 28 October 2005 (UTC)
- I agree, it's good to have separate ones. This summarizes and shows its place, glycolysis can be for more extensive detail and general interest not related to other cellular respiration processes. Tyciol 20:26, 5 October 2006 (UTC)
[edit] Link reaction
Shouldn't the link reaction be included here? although an apparently small step in the respiration and metabolic process it is none the less vital as without Acetyl CoA the Krebs Cycle could not occur. -Unknown
[edit] Efficiency of cellular respiration
The actual yield is closer to 30 ATP molecules. User:69.113.3.155
- By the way i do agree that there needs to be more work the inefficency but what is the basis for that number of 30ATP's per glucose being 'normal'? The inefficiency of the proton pumping, leakyness of the inner membrane to protons or that intermediates from glucose to CO2 are continually being syphoned off for other metabolic reactions? I'm not sure we want to put a number on this since it seems that the efficiency would vary depending on the other metabolic reactions occuring in a cell at any given time.
- Same with the efficiency of the ETC which may vary depending on the flux through the pathway. For example, I would imagine the efficiency would decrease during hypoxia or when ATP levels are high since the maximum PMF would be produced under those conditions. However, it may be highly efficient when a lot of oxygen and ADP are available.
- Do you have any more information? David D. (Talk) 22:50, 21 November 2005 (UTC)
[edit] Added a "See also" section
In the Electron transport chain discussion pages, we noted that there are lots of pages on this subject without adequate cross-referencing. I added a See Also section to help correct this problem. -Rozzychan 18:04, 23 June 2006 (UTC)
[edit] Revertion
- "Cellular respiration, involves the exchange of gasses (oxygen and carbon dioxide) between capillary beds in the systemic loop of circulatory system and the interstitial fluid of the tissues of the body."
I just deleted the sentence above since this article does not deal with this definition at all. Is there a cite for cellular respiration being a description of the extracellular gas exchange? Maybe this information is better suited to the disambiguation page? David D. (Talk) 22:52, 13 August 2006 (UTC)
[edit] Fat oxidation?
I'm hoping someone can help me understand where fatty oxidation occurs in this aerobic metabolism, as I can't find it mentioned in the article (are my observation skills bad?). Even if not mentioned, since fat metabolization does take part with oxygen, it might be relevant, and the role of glucos metabolism in running fatty acid oxidation processes. Tyciol 20:26, 5 October 2006 (UTC)