Bias (statistics)
From Wikipedia, the free encyclopedia
- This article is about bias in the field of statistics. For other senses of the word, see bias (disambiguation).
In statistics, the term bias is used for two different concepts. A biased sample is a statistical sample in which members of the statistical population are not equally likely to be chosen. A biased estimator is one that for some reason on average over- or underestimates the quantity that is being estimated.
Although the term bias sounds pejorative, it is not necessarily used in that way in statistics. A biased sample can be difficult to analyze or may lead to inaccurate or wrong inference if the bias is ignored, but biased estimators may have desirable properties, such as small variance, depending on the situation.
In addition to biased samples and biased estimators, a systematic bias acting on each individual observation may also influence the results of a statistical investigation. For instance, if leading questions are used in an enquete, the answers may not be reliable. However, this type of bias falls outside the discipline of statistics, and is not further discussed in this article.
Contents |
[edit] Biased sample
A sample is biased if some members of the population are more likely to be chosen in the sample than others. A biased sample will generally give you a misestimate of the quantity being estimated. For example, if your sample contains members with a higher or lower value of the quantity being estimated, the outcome will be higher or lower than the true value.
A famous case of what can go wrong when using a biased sample is found in the 1936 US presidential election polls. The Literary Digest held a poll that forecast that Alfred M. Landon would defeat Franklin Delano Roosevelt by 57% to 43%. George Gallup, using a much smaller sample (300,000 rather than 2,000,000), predicted Roosevelt would win, and he was right. What went wrong with the Literary Digest poll? They had used lists of telephone and automobile owners to select their sample. In those days, these were luxuries, so their sample consisted mainly of middle- and upper-class citizens. These voted in majority for Landon, but the lower classes voted for Roosevelt. Because their sample was biased towards wealthier citizens, their result was incorrect.
This kind of bias is usually regarded as a worse problem than statistical noise: Problems with statistical noise can be lessened by enlarging the sample, but a biased sample will not go away that easily. In particular, a meta-analysis will distill good data from studies that themselves suffer from statistical noise, but a meta-analysis of biased studies will be biased itself.
[edit] Biased estimator
Another kind of bias in statistics does not involve biased samples, but does involve the use of a statistic whose expectation differs from the value of the quantity being estimated. Suppose we are trying to estimate the parameter θ using an estimator (that is, some function of the observed data). Then the bias of is defined to be
In words, this would be "the expected value of the estimator minus the true value θ". This may be rewritten as
which would read "the expected value of the difference between the estimator and the true value" (the expected value of θ is θ).
For example, suppose X1, ..., Xn are independent and identically distributed random variables with expectation μ and variance σ2. Let
be the "sample average", and let
be a "sample variance". Then S2 is a "biased estimator" of σ2 because
Note that when a transformation is applied to an unbiased estimator, the result is not necessarily itself an unbiased estimate of its corresponding population statistic. That is, for a non-linear function f and an unbiased estimator U of a parameter p, f(U) is usually not an unbiased estimator of f(p). For example the square root of the unbiased estimator of the population variance is not an unbiased estimator of the population standard deviation.
Bias is not the only consideration when choosing a statistic, however. Bias refers to the central tendency of the sampling distribution of a statistic, but the variance of the sampling distribution can also be an important consideration. Specifically, statistics with smaller sampling variances will yield greater statistical power. For example, while S2 above is more biased than the traditional sample calculation
S2 has a lower estimation variability than S2sample because the denominator dividing the sum of squares is larger in the calculation of S2, resulting in a smaller scale of final values, and therefore lower estimation variability, than that of S2sample. Practically, this demonstrates that for some applications (where the amount of bias can be equated between groups/conditions) it is possible that a biased estimator can prove to be a more powerful, and therefore useful, statistic.
A far more extreme case of a biased estimator being better than any unbiased estimator is well-known: Suppose X has a Poisson distribution with expectation λ. It is desired to estimate
The only function of the data constituting an unbiased estimator is
If the observed value of X is 100, then the estimate is 1, although the true value of the quantity being estimated is obviously very likely to be near 0, which is the opposite extreme. And if X is observed to be 101, then the estimate is even more absurd: it is −1, although the quantity being estimated obviously must be positive. The (biased) maximum-likelihood estimator
is better than this unbiased estimator in the sense that the mean squared error
is smaller. Compare the unbiased estimator's MSE of
- 1 − e − 4λ
The MSE is a function of the true value λ. The bias of the maximum-likelihood estimator is:
- .
The bias of maximum-likelihood estimators can be substantial. Consider a case where n tickets numbered from 1 through to n are placed in a box and one is selected at random, giving a value X. If n is unknown, then the maximum-likelihood estimator of n is X, even though the expectation of X is only (n+1)/2; we can only be certain that n is at least X and is probably more. In this case, the natural unbiased estimator is 2X − 1.
[edit] See also
- Confirmation bias
- Publication bias
- Selection bias
- Recall bias
- Response bias
- List of cognitive biases
- Omitted-variable bias