Privacy Policy Cookie Policy Terms and Conditions Flüssigkeitsatmung - Wikipedia

Flüssigkeitsatmung

aus Wikipedia, der freien Enzyklopädie

Flüssigkeitsatmung ist ein experimentelles Verfahren der Tauchtechnik und Tauchmedizin, bei dem der Gasaustausch in der Lunge nicht über Luft bzw. ein Atemgasgemisch, sondern über eine mit Sauerstoff angereicherte Flüssigkeit erfolgt. Im einfachsten Fall würde die Flüssigkeit wie Luft ein- und ausgeatmet, was aber wegen des erheblich höheren Atemwiderstands und anderer Probleme nicht ohne weiteres möglich ist.

Inhaltsverzeichnis

[Bearbeiten] Flüssigkeitsatmung und Tauchtechnik

Eine erfolgreiche Anwendung der lediglich im Labor erprobten Flüssigkeitsatmung würde einige der Probleme von Tieftauchgängen lösen:

  • eine Dekompression im heutigen Maßstab wäre nicht notwendig, sie wäre einfacher, die dafür verwendete Zeit kleiner. Eine Sättigung von Inertgasen im Gewebe entfiele weitgehend, der Gasaustausch der Lunge beschränkt sich auf den Austausch von CO2 und O2.
  • die Vorstellung, die mögliche Tauchtiefe wäre damit anscheinend unbegrenzt, was durch biologische wie praktische Probleme nicht der Fall ist. Die mögliche erreichbare Tiefe wäre allerdings weitaus vergrößert.
  • die komplexe Verwendung eines Atemgasgemisches incl. Inertgases (Helium, etc.) ist nicht mehr notwendig, komplexe Gaswechsel entfallen weitgehend
  • eine Druckregeltechnik zum Ausgleich des wechselnden Wasserdrucks, wie sie heute im Lungenautomaten existiert, wäre nicht notwendig bzw. würde gänzlich anders aussehen. Das Volumen der flüssigkeitsgefüllten Lunge ist durch die inkompressible Flüssigkeit tiefenunabhängig.

Leider sind einige markante Nachteile zu nennen. Einige technische Probleme und biologischen Fragen sind bis heute nicht bzw. nicht vollständig gelöst. Zu den (eher) technischen Fragen zählen:

  • der hohe Atemwiderstand der Flüssigkeit. Zur Überwindung wäre vermutlich in der Tauchpraxis eine technischen Hilfe (Zwangsbeatmung) notwendig.
  • die Frage der Pendelatmung bei Flüssigkeiten, insbesondere die Zirkulation innerhalb der Lunge bis in die Lungenbläschen.
  • die Auskühlung oder Überhitzung des Tauchers über die Atmungsflüssigkeit
  • die Kommunikation ohne nutzbare Stimmbänder
  • die (klare) Sicht bei gefluteter Taucherbrille sowie die direkte Auswirkung der Flüssigkeit auf die Augen
  • die gefahrenfreie und biologisch verträgliche Umstellung von Flüssigkeitsatmung auf Gasatmung und zurück.
  • und letztlich auch die noch nicht entwickelte technische Tauchapparatur mitsamt Flüssigkeitsaufbereitung, Reserve und Redundanz sowie die Gewährleistung der Sterilität, Sicherheit und Energieversorgung. Die Tauchapparatur müsste weiter Flüssigkeitszirkulation und Temperierung sicherstellen.

Für sehr tiefgehende Tauchgänge sind weitere Faktoren zu berücksichtigen:

  • die mögliche Toxizität des Sauerstoffs bei extrem hohen Partialdrücken.
  • mögliche direkte neurologische Schäden durch den Druck bei extrem tiefen Tauchgängen. Bei Labortieren konnte dies z.T. mit Verabreichung von Betäubungsmitteln vor dem Tauchgang bekämpft werden.
  • mögliche Zellschäden durch hohe Drücke

Eine Anwendung beim Tauchen scheidet zur Zeit wegen der noch immer nicht gelösten Probleme aus. Die Mittel zum tauchtechnischen Handling von Flüssigkeitsaufbereitung, CO2-Abscheidung bzw. O2-Anreicherung sind noch nicht entwickelt.

[Bearbeiten] Experimente und Geschichte

Dr. Johannes A. Kylstra (Leiden, Holland) erprobte in den 70er und 80er Jahren die Flüssigkeitsatmung im kleinen Maßstab. Er führte seine Forschungen später an der Universität von Buffalo, New York, weiter. Weitere Ergebnisse stammen von Dr. Dr. Leland Clark and Dr. Golan. Die Forschungen wurden später von der NACA weitergeführt.

Das Verfahren wurde erfolgreich an Labortieren, z.B. Ratten erprobt. Nach und nach konnte das Überleben der Versuchstiere sichergestellt werden. Auch die menschliche, partielle Flüssigkeitsatmung über einen Lungenflügel wurde erfolgreich im Versuch erprobt. Verwendet wurden mit Sauerstoff angereicherte Fluorkohlenwasserstoffe.

[Bearbeiten] Bestehende biologische Probleme

zu den ungelösten bzw. nur teilweise gelösten biologischen Fragen zählen:

  • Lungenschäden bei Versuchstieren,
  • weitere Lungenschäden bei Tieren, mechanisch durch die Beatmung verursacht
  • der CO2-Abtransport aus der Lunge durch die Flüssigkeit
  • die Temperaturabhängigkeit des CO2-Abtransportes in der Lunge
  • die mögliche Anreicherung der Atemflüssigkeit im Blut
  • die gefahrenfreie und biologisch verträgliche Umstellung von Flüssigkeitsatmung auf Gasatmung und zurück.
  • realistische und beobachtete Körper- und Lungenschäden bei verunreinigter Atemflüssigkeit

[Bearbeiten] Anwendung in der Medizin

Eine Abwandlung bzw. Nebenentwicklung, die Flüssigkeitsbeatmung, wird im medizinischen Bereich zur Behandlung von Lungenschäden (Brandgase, Säuglinge, Infektionen) eingesetzt.

Die Flüssigkeit unterstützt mit Sauerstoff und Kohlendioxid angereichert den Gasaustausch und öffnet im Erfolgsfall zusammengefallene Alveolen bzw. verhindert ihren Kollaps. Da Perfluorcarbon (PFC) doppelt so schwer ist wie Wasser, kann es sogar eine kollabierte Lunge erweitern und so einen besseren Gasaustausch vorbereiten. Dies erfolgt dann im künstlichen Koma, damit bei selbstständigen Atembewegungen die Flüssigkeit nicht abgeatmet werden kann. Die mechanische Belastung der Lunge ist im Vergleich zum Beatmungsgerät oft geringer, sekundäre Schäden können u.U. verringert werden.

Die Behandlung befindet sich noch immer in der Erprobung, hat allerdings mittlerweile anscheinend einen sicheren Stand erreicht.

Neben der beschriebenen Flüssigkeitsatmung (TLV) wird auch die Inhalation der Flüssigkeit (PFC vapor bzw. aerosol PFC) sowie eine Pendelatmung mit Flüssigkeit und Gas (PLV) im medizinischen Sektor diskutiert und an Tieren erprobt.

[Bearbeiten] Verwendete Flüssigkeiten

Die im medizinischen Bereich wie im Laborexperiment verwendeten Flüssigkeiten sind, neben salzhaltigem Wasser (isotonische, 0,89 %ige Kochsalzlösung), weitgehend der Fluorkohlenwasserstoffgruppe (z.B. Perfluorocarbon) zuzuordnen. Zum Beispiel LiquiVent von Alliance, Perfluoroctylbromid, mit der Formel C8F17Br. In der Medizin sind ähnliche Stoffe seit einiger Zeit als Blutersatzstoffe (anstatt Spenderblut) im Einsatz.

[Bearbeiten] Science Fiction und Luftfahrt

Im Film "The Abyss" von James Cameron wird die Nutzung eines Flüssigkeitstauchanzuges durch den Hauptdarsteller Ed Harris mit einigen der genannten Probleme dargestellt. Eine eigentliche humane Flüssigkeitsatmung findet trotz der gezeigten fiktiven Tauchtechnik nicht statt, es handelt sich lediglich um eine filmische Darstellung. Bei der ebenfalls im Film gezeigten Laborratte handelt es sich allerdings um keinen Trick, sie atmet real flüssig.

Im Rollenspielsystem "LodlanD" wurden die Probleme der Flüssigkeitsatmung überwunden und für große Tauchtiefen sind Flüssigtauchanzüge weit verbreitet.

Die für hohe G-Kräfte in der Raumfahrt im Science Fiction diskutierten flüssigkeitsgefüllten Beschleunigungskammern sind physikalisch möglich und nicht zuletzt durch Flüssigkeitsatmung sogar machbar. Fiktive Anwendung fanden sie etwa in der Jugendbuchserie von bzw. über Mark Brandis, als spezielle Anzüge in der TV-Serie „UFO“ oder als energetisches Stasis-Feld bei Roger Leloup und Luc Orients Terango-Reisen. Der Übergang von der Gasatmung zur Flüssigkeitsatmung findet sich z.B. bei Flash Gordon.

Weil das medizinisch angewendete LiquiVent eine Dichte von 1,93 g/ml hat, wäre es für hohe G-Kräfte weniger gut geeignet als die isotonische Kochsalzlösung, die in ihrer Dichte dem menschlichen Gewebe näher kommt. Der geringeren Löslichkeit von Sauerstoff in der isotonischen Kochsalzlösung im Vergleich zum LiquiVent könnte man dadurch begegnen, dass man den Partialdruck des Sauerstoffs erhöht.


[Bearbeiten] Weblinks

Andere Sprachen
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu