Privacy Policy Cookie Policy Terms and Conditions Eigenfrequenz - Wikipedia

Eigenfrequenz

aus Wikipedia, der freien Enzyklopädie

Eine Eigenfrequenz eines schwingfähigen Systems ist eine Frequenz, mit der das System nach einmaliger Anregung schwingen kann (bei Vernachlässigung der Dämpfung).

Wenn einem solchen System von außen Schwingungen aufgezwungen werden, deren Frequenz mit der Eigenfrequenz übereinstimmt, reagiert das System mit besonders großen Amplituden, was man als Resonanz oder, wenn zerstörende Auswirkungen auftreten, Resonanzkatastrophe bezeichnet.

Wie die Eigenfrequenz eines Systems mit nur einem Freiheitsgrad bestimmt wird, kann am Beispiel eines Federpendels erklärt werden. Eine Kugel mit der Masse m hängt an einer Spiralfeder mit der Federrate c, das ist die Kraft pro Auslenkung, mit der diese Feder reagiert. Die Kugel unterliegt dem Zweiten Newton'schen Axiom (Masse * Beschleunigung = Summe aller Kräfte, die auf die Kugel wirken). Diese bestehen aus dem Gewicht nach unten sowie aus der Federkraft nach oben. Die statischen Kräfte in der Ruhelage sind für sich alleine in der Summe Null, also kann das Gewicht und die statische Federkraft ignoriert werden. Übrig bleibt eine Abweichung von der statischen Federkraft als einzige Kraft, die zu berücksichtigen ist. Diese Kraft zieht die Kugel nach oben, wenn diese sich unterhalb der Ruhelage befindet und drückt die Kugel nach unten, wenn diese sich oberhalb der Ruhelage befindet. Also ist Masse * Beschleunigung entgegengesetzt gleich dem c-fachen der Auslenkung z(t), die mit der Zeit t schwankt:

m \frac{\partial^2 z(t)}{\partial t^2} = - c z(t)     \Rightarrow     m \frac{\partial^2 z(t)}{\partial t^2} + c z(t) = 0

Diese lineare homogene Differentialgleichung lässt sich mit folgendem Ansatz lösen:

{z(t) = a \,\sin(\omega_0 t)\,\,}

Wenn man den Ansatz in die Differentialgleichung einsetzt, ergibt sich

(c - \omega_0^2 m) \sin(\omega_0 t) = 0

was nur dann für alle Zeiten t gilt, wenn der Koeffizient der Sinusfunktion für sich alleine null ist.

c - \omega_0^2 m = 0 \Rightarrow \omega_0 = \sqrt{\frac{c}{m}}

{\omega_0 \,} ist die Eigen-Kreisfrequenz. Sie ist {2 \pi\,} mal so groß wie die Eigenfrequenz. Das Federpendel schwingt also mit der Periodendauer T = 2π / ω0.

Wenn man die Feder an ihrem oberen Ende mit dem Weg {z_0\sin(\omega t)\,} zwangsbewegt, entspricht die Federkraft nicht mehr der gesamten Auslenkung der Kugel, sondern nur noch der Differenz zur Auslenkung am gegenüberliegenden Ende der Feder. Die allererste Gleichung geht damit über in

m \frac{\partial^2 z(t)}{\partial z^2} = - c (z(t) - z_0\sin(\omega t))     \Rightarrow     m \frac{\partial^2 z(t)}{\partial z^2} + c z(t) = c z_0 \sin(\omega t)

Die homogene Lösung entspricht dem oben beschriebenen Problem und stellt eine freie Schwingung in der Eigenfrequenz dar, deren Amplitude und Phasenlage von den Anfangsbedingungen abhängt. Ihr überlagert sich als Partikulärlösung die erzwungene Schwingung

z(t) = \frac{c/m}{c/m - \omega^2}\,z_0\,\sin(\omega t)    = \frac{\omega_0^2}{\omega_0^2 - \omega^2}\,z_0\,\sin(\omega t)    = \frac{1}{1 - (\omega/\omega_0)^2}\,z_0\,\sin(\omega t)

Die Amplituden werden im Resonanzfall { \omega = \omega_0\,} unendlich groß. Bei Dämpfung, die hier nicht behandelt wird, aber immer vorhanden ist, werden sie zwar nicht mehr unendlich groß, aber immer noch größer als in jeder anderen Frequenz. Die Eigenfrequenz(en) der meisten Systeme ändern sich infolge Dämpfung nur so geringfügig, dass die ungedämpften Eigenfrequenzen von Interesse bleiben.

Systeme mit mehreren Freiheitsgraden werden in Analogie dazu mit einer Matrizengleichung beschrieben:

[M] \frac{\partial^2 \{X\}}{\partial t^2}     +[B] \frac{\partial \{X\}}{\partial t}     + [C] \{X\} = \{F\}.

Darin ist [M] die Massenmatrix, [B] die Dämpfungsmatrix, [C] die Steifigkeitsmatrix und {F} der Lastvektor. Eine Untersuchung der freien Schwingungen des ungedämpften Systems führt zum allgemeinen Eigenwertproblem

{\,([C] - \omega^2 [M])\{X\} = 0 \,}

Dies kann in ein spezielles Eigenwertproblem umgerechnet werden, wie unter "Eigenwertproblem" beschrieben, um die Eigenfrequenzen des Systems zu berechnen.

Systeme mit unendlich vielen Freiheitsgraden weisen unendlich viele Eigenfrequenzen auf, beispielsweise ein beidseitig gelenkig gelagerter Biegebalken mit der Biegesteifigkeit EI und der Masse pro Längeneinheit m, dessen Durchbiegung w(x,t) sich abhängig von Ort x und Zeit t aus folgender Differentialgleichung ergibt:

EI\,\frac{\partial^4 w}{\partial x^4} + m\frac{\partial^2 w}{\partial t^2} = 0

Die beidseitig gelenkige Lagerung wird durch ein ganzes vielfaches an Halbwellen erfüllt, und der entsprechende Ansatz

w(x,t) = \sin\left(\frac{j\pi x}{L}\right) \sin(\omega t)

ergibt die Eigenfrequenzen

\omega_j = \sqrt{\frac{EI}{m} \left(\frac{j\pi}{L}\right)^4} \quad;\quad j=1,2,3,\ldots

[Bearbeiten] Beispiel

Ein Gebäude kann bestimmte Eigenfrequenzen aufweisen. Wenn bei einem Nachbarn Musik durchaus sehr leise läuft, kann es vorkommen, dass die Bässe mit einer Eigenfrequenz des Gebäudes gleichfrequent sind, was sich als lautes Wummern äußert, ohne dass die Musik als solche hörbar wäre.

[Bearbeiten] Siehe auch

[Bearbeiten] Weblinks

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu