Privacy Policy Cookie Policy Terms and Conditions User:SomeDream - Wikipedia

User:SomeDream

维基百科,自由的百科全书

这是一个个人沙盒,主要用于编辑数学公式的测试...

\in \mathbb{R}_+ Density function: \int_a^b f(x)\mathrm{d}x = \mathbb{P}(a<x<b),\ \forall a < b

Kernel Density estimator :\hat{f}(x) = \frac{1}{nh}\sum_{i=1}^{n}K\left(\frac{x-X_i}{h}\right) Variable Kernel Density estimator :\hat{f}(x) = \frac{1}{n}\sum_{i=1}^{n}\frac{1}{h_i}K\left(\frac{x-X_i}{h_i}\right)

NormalKerdnfunktion :k(x)=(2\pi)^{-\frac{1}{2}}e^{-\frac{x^2}{2}} Uniform :k(x)=\frac{1}{2}\mathbf{1}_{\left\{|x|<1\right\}} Triangular : k(x)= (1-|x|)\mathbf{1}_ {\left\{|x|<1\right\}}

Epannecknikov k(x)=2^3\mathbf{B}(2,2)^{-1}(1-x^2)\mathbf{1}_{\left\{|x|<1\right\}} =\frac{3}{4}(1-x^2)\mathbf{1}_{\left\{|x|<1\right\}}

Biweight: k(x)=2^5\mathbf{B}(3,3)^{-1}(1-x^2)^2\mathbf{1}_{\left\{|x|<1\right\}} =\frac{15}{16}(1-x^2)^2\mathbf{1}_{\left\{|x|<1\right\}}

Triwegiht:k(x)=2^7\mathbf{B}(4,4)^{-1}(1-x^2)^3\mathbf{1}_{\left\{|x|<1\right\}} =\frac{35}{32}(1-x^2)^3\mathbf{1}_{\left\{|x|<1\right\}}

MISE: \mathbf{MISE}(\hat{f}) = \mathbb{E}\int \{ \hat{f}(x)-f(x)\}^2\mathrm{d}x = \int \{\mathbb{E}\hat{f}(x)-f(x)\}^2\mathrm{d}x + \int \mathbf{var} \hat{f}(x)\mathrm{d}x

da : \mathbb{E}\hat{f}(x)-f(x) = \frac{1}{2}h^2\mu_2(K)f^{\prime\prime}(x)+o(h^2) und \mathbf{var}\hat{f}(x) = \frac{1}{nh}R(K)f(x)+o(\frac{1}{nh})

wobei: \mu_2(g)=\int t^2 g(t)dt und R(g)=\int g(t)^2dt sind. \mathbf{MISE}(\hat{f}) \approx \frac{1}{4}h^4\mu_2^2(K)R(f^{\prime\prime})+\frac{1}{nh}R(K)

\mbox{minimiere }\mathbf{MISE}(\hat{f}) \Longrightarrow h_{opt} = \left[ \frac{R(K)}{\mu_2^2(K)R(f^{\prime\prime})n} \right]^{\frac{1}{5}}

conditional density estimator:

\hat{f}(y\,|x) = \frac{\sum_{i=1}^n K\left(\frac{\|x-X_i\|_x}{a}\right)K\left(\frac{\|y-Y_i\|_y}{b}\right)}{b\sum_{j=1}^n K\left(\frac{\|x-X_j\|_x}{a}\right)}

wobei: \int K(x)\mathrm{d}x=1 \ ,\ \int xK(x)\mathrm{d}x=0\  ,\ \mu_2(K)=\int x^2K(x)\mathrm{d}x<\infty

Refenrence Rule:

\mathbf{MISE}(\hat{f}) = \mathbb{E}\iint\{\hat{f}(y|x)-f(y|x)\}^2h(x)\mathrm{d}x\mathrm{d}y \approx \frac{c_1}{nab}-\frac{c_2}{na} + c_3a^4+c_4b^4+c_5a^2b^2 , wobei

c_1=\int R^2(K)\mathrm{d}x , c_2=\iint R(K)f(y|x)\mathrm{d}y\mathrm{d}x , c_3=\iint \frac{\mu_4(K)h(x)}{4}\left\{2\frac{h^\prime(x)}{h(x)}\frac{\partial f(y|x)}{\partial x}+\frac{\partial^2 f(y|x)}{\partial x^2}\right\}^2\mathrm{d}y\mathrm{d}x ,

c_4=\iint \frac{\mu_4(K)h(x)}{4}\left\{\frac{\partial^2 f(y|x)}{\partial y^2}\right\}^2\mathrm{d}y\mathrm{d}x ,

c_5=\iint \frac{\mu_4(K)h(x)}{2}\left\{2\frac{h^\prime(x)}{h(x)}\frac{\partial f(y|x)}{\partial x}+\frac{\partial^2 f(y|x)}{\partial x^2}\right\}\left\{\frac{\partial^2 f(y|x)}{\partial y^2}\right\}\mathrm{d}y\mathrm{d}x ,


Normal Refenrence Rule:

a_N = \left\{\frac{16kR^2(K)p^5(288\pi^9\sigma_h^{58}\lambda^2(k))^{1/8}}{n\sigma_K^4d^{5/2}\nu^{3/4}(k)[\nu^{1/2}(k)+d(18\pi\sigma_h^{10}\lambda^2(k))^{1/4}]}\right\}^{1/6}, und

b_N = \left\{\frac{d^2\nu(k)}{3\sqrt{2\pi}\sigma_h^5\lambda(k)}\right\}^{1/4}a_N,

wobei \lambda(k)=\int_{-k}^{k}\phi(t)dt\ , \ \nu(k)=\sqrt{2\pi}\sigma_h^3(3d^2\sigma_h^2+8p^2)\lambda(k)-16k\sigma_h^2p^2e^{-k^2/2}

Bivariate density estimator: \hat{f}(x)=\frac{1}{nh^2}\sum_{i=1}^{n}K\big(\frac{x-X_i}{h}\big) , wobei \iint K(x)\mathrm{d}x=1

polynomial Kernel: \hat{f}(x)=\frac{1}{nh}\left[\mbox{Anzahl der }X_i \mbox{ in dem Block, der }x \mbox{ enthaelt.}\right]

Bashtannyk-Hydermann-Regression method: \mbox{minimiere }Q_b(a)=\frac{\Delta}{n}\sum_{k=1}^N\sum_{i=1}^n\left(\nu_i(y'_k)-\sum_{j=1}^n w_j(x_i)\nu_j(y'_k)\right)^2 p(w_i(X_i))

wobei: Y'=\{y'_1,\cdots ,y'_N\} eine Folge, die den Raum von Y mit gleicher Distanz Δ, einteilen kann, und\nu_i(y)=\frac{1}{b}K\left(\frac{|Y_i-y|}{b}\right)\ , \  w_j(x)=\frac{K\left(\frac{\|x-X_j\|}{a}\right)}{\sum_{i=1}^n K\left(\frac{\|x-X_i\|}{a}\right)}.

Bashtannyk-Hydermann_Bootstrap methode: \mbox{minimiere }M(a,b;m,y',\tilde{f})= \frac{1}{m}\sum_{l=1}^n\left\{\frac{\Delta}{n}\sum_{j=1}^N\sum_{i=1}^n\left[\hat{f}(y'_j|X_i)-\tilde{f}(y'_j|X_i)\right]^2\right\}

Hier: \tilde{f}(y|x) ist ein parametrischer Schätzer aus der linearen Modell Y_i=\sum_{j=1}^n\beta_j X_i^j+\sigma\epsilon_i, und der Vektor Y^{(l)}=\{Y^{(l)}_i,\cdots,Y^{(l)}_n\} ist durch Bootstrapping basierend Stichproben X simuliert.

ASH: \hat{f}(x)=\frac{\sum_{i=1-m}^{m-1}K(i/m)\nu_{k+i}}{n\delta\sum_{j=1-m}^{m-1}K(j/m)}, \ x\in B_k

l(\cdot):\mathbb{R}\rightarrow\mathbb{R}^+ \hat{f}(y|x)=l(\hat{\theta}_0), \hat{\theta}_{xy}=(\hat{\theta}_0,\hat{\theta}_1,\cdots,\hat{\theta}_r)^T, R(θ;x,y)

HDR: R(f_{\alpha}):=\{x: f(x)\ge f_{\alpha}\} und \mathbb{P}\left(X \in R(f_{\alpha})\right)\ge 1-\alpha

f_{\alpha}\  \in \ 100(1-\alpha)%

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu