Privacy Policy Cookie Policy Terms and Conditions 集合代数 - Wikipedia

集合代数

维基百科,自由的百科全书

集合代数发展并描述了集合的基本性质和规律,集合论运算,如并集交集补集,以及集合的关系,如等于包含。这门学科系统研究如何来表达和进行上述的运算和关系的操作。

目录

[编辑] 导言

集合代数是研究集合运算和集合关系的基本性质的学科。研究这些性质可以深入探究集合的本质,也有助于实际应用。

像普通算术的表达和计算一样,集合的表达和计算可能相当复杂。通过系统研究将有助于熟练使用和理解这些表达方式并进行计算。

在算术研究方面,是通过初等代数来研究算术的运算和关系的。

例如:加法乘法运算遵循人们熟知的交换律结合律分配律;而"小于等于"关系满足自反性反对称性传递性。 这些规律提供了简化计算的工具,并描述了算术的本质、运算和关系。

集合代数相当于集合论中的算术代数。它是关于集合论运算如交集、并集、补集,和集合论关系如等于、包含等的代数:本文主要介绍这些内容。对集合的基本介绍请参见集合,更详尽的内容请参见朴素集合论

[编辑] 集合代数的基本规律

集合的二元运算并集交集满足许多恒等式。有些恒等式或"规律"有确定的名称。三组规律不加证明地罗列如下:

命题 1:对任意集合 ABC,下列恒等式成立:

交换律
  • AB  =  BA
  • AB  =  BA
结合律
  • (AB) ∪C  =  A ∪(BC)
  • (AB) ∩C  =  A ∩(BC)
分配律
  • A ∪(BC)  =  (AB) ∩(AC)
  • A ∩(BC)  =  (AB) ∪(AC)

注意并集和交集同算术加法和乘法的相似性是非常明显的。同加法和乘法一样,并集和交集也是满足交换律和结合律的,而且,交集对并集满足分配律;但是,并集对交集也满足分配律,这同加法和乘法不一样。

下一个命题包含三种特殊集合:空集全集、集合的补集,给出关于它们的两组规律。

命题 2:对全集 U 的任意子集 A,下列恒等式成立:

同一性:
  • A ∪Ø  =  A
  • AU  =  A
补集律:
  • AAC  =  U
  • AAC  =  Ø

同一性(结合交换律)说明,就像 0 和 1 对于加法和乘法,Ø 和 U 是并集和交集的单位元

同加法和乘法不同,并集和交集没有逆元。然而,补集律给出了类似逆运算的一元运算,集合的补集的基本性质。

上述五组性质:交换律、结合律、分配律、同一性和补集律,可以说包含了集合代数的所有内容,可以认为集合代数中所有正确的命题都是从它们得到的。

[编辑] 对偶性原理

上述命题有一个有趣的形式,就是每一组恒等式都是成对出现的。将 ∪ 和 ∩,或者 Ø 和 U 相互交换,一个恒等式就变成了相应的另一个。

这是集合代数的一个非常重要的性质,称作集合的对偶性原理。它对集合的所有真命题都有效。真命题通过相互交换 ∪ 和 ∩,Ø 和 U,改变包含符号的方向得到的对偶命题也是真的。若一个命题和其对偶命题相同,则称其为自对偶的。

[编辑] 更多关于并集和交集的定律

下列命题给出六条关于并集和交集的重要定律。

命题 3:对任意全集 U 的子集 AB,下列恒等式成立:

幂等律:
  • AA  =  A
  • AA  =  A
支配律:
  • AU  =  U
  • A ∩Ø  =  Ø
吸收律:
  • A ∪(AB)  =  A
  • A ∩(AB)  =  A

如前所述,命题 3 里的每条定律都可以从命题 1 和命题 2 的五组基本定律推导出来。作为说明,下面给出并集的幂等律的证明。

证明:

     AA = (AA) ∩U    交集的同一律
  = (AA) ∩(AAC)    并集的补集律
  = A ∪(AAC)    并集对交集的分配律
  = A ∪Ø    交集的补集律
  = A    并集的同一律

下列证明说明,上述证明的对偶是对并集的幂等律的对偶,即交集的幂等律的证明。

证明:

     AA = (AA) ∪Ø    并集的同一律
  = (AA) ∪(AAC)    交集的补集律
  = A ∩(AAC)    交集对并集的分配律
  = AU    并集的补集律
  = A    交集的同一律

[编辑] 更多关于补集的定律

下列命题给出五条关于补集的重要定律。

命题 4:设 AB 为全集 U 的子集,则:

德·摩根律
  • (AB)C  =  ACBC
  • (AB)C  =  ACBC
重补集或对合律:
  • ACC  =  A
全集和空集的补集律:
  • ØC  =  U
  • UC  =  Ø

注意,重补集律是自对偶的。

下一个命题也是自对偶的,说明集合的补集是唯一满足补集律的集合。也就是说,互补的特征通过补集律体现。

命题 5:设 AB 为全集 U 的子集,则:

补集的唯一性:
  • AB  =  UAB  =  Ø 则 B = AC

[编辑] 包含的代数

下列命题说明包含是种偏序关系

命题 6:若 ABC 为集合,则下述成立:

自反性
  • A ⊆ A
反对称性:
  • A ⊆ BB ⊆ A,当且仅当 A = B
传递性:
  • A ⊆ BB ⊆ C,则 A ⊆ C

下列命题说明对任意集合 SS幂集按照包含来排列是个有界格;因此,结合上述的分配律和补集律,它是一个布尔代数

命题 7:若 ABC 是集合 S 的子集,则下述成立:

存在最小元最大元
  • Ø ⊆ A ⊆ S
存在并运算:
  • A ⊆ AB
  • A ⊆ CB ⊆ CAB ⊆ C
存在交运算:
  • AB ⊆ A
  • C ⊆ AC ⊆ BC ⊆ AB

下列命题说明,"A ⊆ B " 与各种采用并集、交集、补集的表示方法等价。

命题 8:对任意两个集合 AB,下述等价:

  • A ⊆ B
  • AB  =  A
  • AB  =  B
  • A − B  =  Ø
  • BC ⊆ AC

上述命题说明,集合的包含关系可以采用并集运算或交集运算来表示,即包含关系在公理体系中是多余的。

[编辑] 相对补集的代数

下列命题给出一些关于相对补集或集合论差的恒等式。

命题 9:对任意全集 UU 的子集 ABC,下列恒等式成立:

  • C − (AB)  =  (C − A) ∪(CB)
  • C − (AB)  =  (C − A) ∩(CB)
  • C − (B − A)  =  (AC) ∪(C − B)
  • (B − A) ∩C  =  (BC) − A  =  B ∩(C − A)
  • (B − A) ∪C  =  (BC) − (A − C)
  • A − A  =  Ø
  • Ø − A  =  Ø
  • A − Ø  =  A
  • B − A  =  ACB
  • (B − A)C  =  ABC
  • U − A  =  AC
  • A − U  =  Ø

[编辑] 参考

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu