Gradient
Iz Wikipedije, proste enciklopedije
Gradiênt je diferencialna operacija, definirana nad skalarnim ali vektorskim poljem, ki pove, v kateri smeri se polje najbolj spreminja. Gradient označujemo z oznako »grad« ali simbolom (nabla).
Vsebina |
[uredi] Gradient skalarnega polja
[uredi] Kartezični koordinatni sistem
V trorazsežnem kartezičnem koordinatnem sistemu zapišemo gradient kot:
Pri tem je f(r) skalarno polje, odvisno od krajevnega vektorja r = (x, y, z), oznake pa označujejo parcialne odvode po vsaki od koordinat.
[uredi] Splošen krivočrtni koordinatni sistem
[uredi] Cilindrični koordinatni sistem
V cilindričnem koordinatnem sistemu se gradient skalarnega polja f(r) izraža kot:
Pri tem je r=(r, φ, z) krajevni vektor, izražen v cilindričnem koordinatnem sistemu, er, eφ in ez pa enotski vektorji v smeri vsake od koordinatnih osi.
[uredi] Sferni koordinatni sistem
V sfernem koordinatnem sistemu se gradient skalarnega polja f(r) izraža kot:
Pri tem je r=(r, θ, φ) krajevni vektor, izražen v sfernem koordinatnem sistemu, er, eθ in eφ pa enotski vektorji v smeri vsake od koordinatnih osi.
[uredi] Gradient vektorskega polja
[uredi] Literatura
- Ivan Kuščer, Alojz Kodre, Matematika v fiziki in tehniki, Društvo matematikov, fizikov in astronomov Slovenije, Ljubljana 1994, str. 56-62.
[uredi] Glej tudi
- vektorska analiza
- divergenca, rotor
- Ta matematični članek je škrbina. Slovenski Wikipediji lahko pomagate tako, da ga dopolnite z vsebino.