Privacy Policy Cookie Policy Terms and Conditions Частица в периодическом потенциале — Википедия

Частица в периодическом потенциале

Материал из Википедии — свободной энциклопедии

В квантовой механике, частица в одномерном периодическом потенциале это идеализированная задача, которая может быть решена точно (при некоторых специального вида потенциалах), без упрощений. Предполагается, что потенциал бесконечен и периодичен, то есть обладает трансляционной симметрией, что вообще говоря не выполняется для реальных кристаллов и всегда существует как минимум один дефект — поверхность (это приводит к другой задаче о поверхностных состояниях или таммовских уровнях).

Содержание

[править] Постановка задачи

Рассмотрим одномерную решётку положительных ионов, расстояние между которыми \! a. Потенциал в этом случае будет выглядеть подобно этому:

Изображение:Potential-actual.PNG

Уравнение Шрёдингера в нашем случае:

-\frac{\hbar^2}{2m}\frac{\partial^2 \psi (x)}{\partial x^2} + V_a(x) \psi (x) = E \psi (x)

с периодическим потенциалом Va(x) = Va(x + a). Общий вид решения уравнения Шрёдингера с периодическим потенциалом, согласно теореме Блоха —

\psi (x) = e^{ikx} u(x), \;

где u(x) — некоторая периодическая функция:

u(x + a) = u(x).

Кстати, k часто называют квазиимпульсом, по аналогии с волновой функцией eikx для частицы с определённым импульсом k.

Как видно, вся волновая функция определяется величиной k и любым участком функции длиной a.

При приближении к краям решётки появляется проблема граничных условий. Удобно представить решётку кольцом некоторой длины L >> a. Тогда вместо двух граничных условий у нас всего одно граничное условие:

\psi (0)=\psi (L)\,

Если N — число ионов в решётке, то aN = L. Подставляя волновую функцию в граничное условие, получаем квантование для k:

\psi (0) = e^{ik \cdot 0} u(0) = e^{ikL} u(L) = \psi (L)\,
u(0) = e^{ikL} u(N a) \rightarrow e^{ikL} = 1\,
\Rightarrow kL=2\pi n \rightarrow k= {2\pi \over L} n \qquad \left( n=0, \pm 1, \pm 2, ..., \pm {N \over 2} \right).\,

[править] Модель Кронига-Пенни

Для упрощения задачи потенциал приближают прямоугольным:

Изображение:Potential-approx.PNG

Используя теорему Блоха мы найдём волновую функцию во всём пространстве, но сначала надо найти решение для одного периода, и сделать его гладким на краях, то есть "сшить" значения соседних функций и их производных. Рассмотрим один период потенциала:

Изображение:Potential-period.PNG

У нас есть две независимых области для которых мы найдём решения:

0<x<a-b : {-\hbar^2 \over 2m} \psi_{xx} = E \psi
\Rightarrow \psi = A e^{i \alpha x} + A' e^{-i \alpha x} \quad \left( \alpha^2 = {2mE \over \hbar^2} \right)
-b<x<0 : {-\hbar^2 \over 2m} \psi_{xx} = (E+V_0)\psi
\Rightarrow \psi = B e^{i \beta x} + B' e^{-i \beta x} \quad \left( \beta^2 = {2m(E+V_0) \over \hbar^2} \right)

Для нахождения u(x) в каждой области нужно проделать следующие преобразования:

\psi(0<x<a-b) = A e^{i \alpha x} + A' e^{-i \alpha x} = e^{ikx} \cdot \left( A e^{i (\alpha-k) x} + A' e^{-i (\alpha+k) x} \right)
\Rightarrow u(0<x<a-b)=A e^{i (\alpha-k) x} + A' e^{-i (\alpha+k) x}

Аналогично получим

u( -b<x<0)=B e^{ i (\beta - k) x} + B' e^{ - i ( \beta + k ) x} \;

Чтобы найти полное решение нам надо убедиться в гладкости искомой функции на границах:

\psi(0^{-})=\psi(0^{+}) \quad \psi'(0^{-})=\psi'(0^{+})

и периодичности u(x) и u'(x)

u(-b)=u(a-b) \quad u'(-b)=u'(a-b).\,

Эти условия дают следующую матрицу:

\begin{pmatrix} 1 & 1 & -1 & -1 \\ \alpha & -\alpha & -\beta & \beta \\ e^{i(\alpha-k)(a-b)} & e^{-i(\alpha+k)(a-b)} & -e^{-i(\beta-k)b} & -e^{i(\beta+k)b} \\ (\alpha-k)e^{i(\alpha-k)(a-b)} & (\alpha+k)e^{-i(\alpha+k)(a-b)} & -(\beta-k)e^{-i(\beta-k)b} & (\beta+k)e^{i(\beta+k)b} \end{pmatrix} \begin{pmatrix} A \\ A' \\ B \\ B' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}

Для существования нетривиального решения необходимо зануление детерминанта этой матрицы. После некоторых преобразований получаем:

\cos(k a) = \cos(\beta b) \cos[\alpha(a-b)]-{\alpha^2+\beta^2 \over 2\alpha \beta} \sin(\beta b) \sin[\alpha(a-b)]. \qquad ( * )

Для дальнейшего упрощения мы выполним следующие упрощения, смысл которых заключается к переходу к дельта-образным потенциалам (дираковская гребёнка) :

b \rightarrow 0 \ ; \ V_0 \rightarrow \infty \ ; \ V_0 b = \mathrm{constant}
\Rightarrow \beta b \rightarrow 0 \ ; \ \beta^2 b = \mathrm{constant} \ ; \ \alpha^2 b \rightarrow 0 \ ; \ \sin(\beta b) \rightarrow \beta b \ ; \ \cos(\beta b) \rightarrow 1

Тогда конечный ответ будет:

\cos(k a) = \cos(\alpha a)-P{\sin(\alpha a) \over \alpha a} \qquad \left( P={\beta^2 a b \over 2} \right)

[править] Программный код

Следующий программный код написан на языке Maple (9.5). Представляет собой просто графическое решение ( * ).

 
 > restart;
 > with(plots):
 > with(stats[statplots]):
 > eq:=cos(k*a)=cos(beta*b)*cos(alpha*(a-b))-   
 (alpha^2+beta^2)/(2*alpha*beta)*sin(beta*b)*sin(alpha*(a-b));
 > alpha:=sqrt(8*Pi^2*m*(E)*e/h^2):
 > beta:=sqrt(4*Pi^2*m*(E+V)*e/h^2):
 > e:=1.6*1e-19:
 > a:=0.54310*1e-9:
 > m:=0.19*9.1*1e-31:
 > b:=1/5*a:
 > h:=6.6*1e-34:
 > k(E,V):=arccos(rhs(evalf(eq)));
 #График
 > p:=plot({subs(V=10,k(E,V)),subs(V=10,-k(E,V))},E=-5..50,labels=[ka, E],color=blue):
 > xyexchange(p);
 #Анимация, зависимость от глубины ямы
 > p:=animate( plot, [{k(E,V),-k(E,V)},E=-10..50, color=blue,labels=[ka, E]], V=0..30 ):
 > xyexchange(p);
 

На рисунках представлены графические решения уравнения ( * ).

Линии отвечают разрешённым значениям энергии. Существуют области по энергии, где ни при каких значениях волнового вектора невозможно существование электрона.
Увеличить
Линии отвечают разрешённым значениям энергии. Существуют области по энергии, где ни при каких значениях волнового вектора невозможно существование электрона.
Линии отвечают разрешённым значениям энергии. Показано движение закона дисперсии в зависимости от глубины потенциальной ямы.
Увеличить
Линии отвечают разрешённым значениям энергии. Показано движение закона дисперсии в зависимости от глубины потенциальной ямы.

На правом рисунке видно, как при некотором значении потенциальной энергии возможно образование одномерного безщелевого полупроводника.

[править] Ссылки

 
На других языках
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu