БН-600
Материал из Википедии — свободной энциклопедии
[править] Конструкция АЭС с реакторной установкой БН-600
Главная особенность ядерных реакторов на быстрых нейтронах состоит в том, что они открывают возможность использования не делящихся в реакторах на тепловых нейтронах изотопов тяжёлых элементов. В топливный цикл могут быть вовлечены запасы 238U и 232Th, которых в природе значительно больше, чем 235U — основного горючего для реакторов на тепловых нейтронах. В том числе может быть использован и так называемый «отвальный уран», оставшийся после обогащения ядерного горючего 235U.
Эту статью следует викифицировать. Пожалуйста, оформите её согласно общим правилам и указаниям. |
Реакторы на быстрых нейтронах дают реальную возможность расширенного воспроизводства ядерного горючего. Это значит, что, например, на 100 разделившихся ядер горючего в реакторах на быстрых нейтронах образуется примерно 120—140 новых ядер, способных к делению.
Активные зоны реакторов на быстрых нейтронах (БН) весьма существенно отличаются от активных зон реакторов на тепловых нейтронах.
Экономически необходимая средняя глубина выгорания уран-плутонивого топлива в БН должна составлять 100—150 МВт·сут/кг, т. е. она должна быть в 2,5—3 раза выше, чем в реакторах на тепловых нейтронах, что обусловлено высокой стоимостью топлива БН. Для достижения указанной глубины выгорания требуется высокая радиационная стойкость ТВЭЛ и ТВС БН, необходимая стабильность геометрических параметров, сохранение герметичности и пластичности оболочек ТВЭЛ, их совместимость с продуктами деления и устойчивость к коррозионному воздействию теплоносителя и т. п. Активная зона БН окружена в радиальном и осевом направлениях зонами воспроизводства (экранами), заполненными воспроизводящим материалом — обедненным ураном, содержащим 99,7—99,8 % 238U.
Главная же особенность использования уран-плутониевого топлива в БН состоит в том, что в его активной зоне процесс деления ядер быстрыми нейтронами сопровождается большим выходом (на 20—27 %) вторичных нейтронов, чем в реакторах на тепловых нейтронах. Это создает основную предпосылку для получения высокого значения коэффициента воспроизводства и обеспечивает расширенное воспроизводство ядерного топлива в реакторах-размножителях.
Использование в качестве теплоносителя натрия ставит перед эксплуатацией АЭС следующие задачи.
Среди них следующие:
- чистота натрия используемого в БН. Возможно достичь даже 99,95 %, то есть не более 5·10−4 примесей. Больше проблем вызывают примеси кислорода из-за участия кислорода в массопереносе железа и коррозии компонентов;
- натрий является очень активным химическим элементом. Он горит в воздухе и других окисляющих агентах. Горящий натрий образует дым, который может вызвать повреждение оборудования и приборов. Проблема усложняется в случае, если дым натрия радиоактивен. Горячий натрий в контакте с бетоном может реагировать с компонентами бетона и выделять водород, который в свою очередь взрывоопасен. Для устранения опасности, натрий и продукты его сгорания следует тщательно контролировать;
- возможность реакций натрия с водой и органическими материалами. Особенно это важно для конструкции парогенератора, так как утечка из водяного контура в натриевый приводит к быстрому росту давления.
Стабильность быстрых реакторов зависит от параметров, перечисленных ниже:
- пустотного натриевого коэффициента.
- Изменение в реактивности происходит при изменении плотности натриевого теплоносителя (или полного оголения АЗ). Натриевый пустотный коэффициент может быть положительным или отрицательным, зависит от размеров АЗ, геометрии и состава материалов;
- механических расширений ТВЭЛ.
- При увеличении уровня мощности реактора, происходит тепловое расширение топливных сборок. Это эффективно увеличивает размеры АЗ, тем самым уменьшается ее реактивность;
- радиоактивность первого контура.
Радиоактивные изотопы 24Na, 22Na являются продуктами активации, возникающими вследствие нейтронного облучения натрия первого контура. Периоды полураспада 24Na и 22Na составляют соответственно 15 ч и 2,6 года. Как результат, радиоактивность натрия первого контура остается высокой в течение значительного времени после остановки реактора. Касаясь только 24Na, отметим, что требуется более четырех суток после остановки реактора, прежде чем персонал может находиться вблизи больших количеств натриевого теплоносителя.
Переход к серийному сооружению АЭС с БН осложнено многими неотработанными в промышленном масштабе технологическими процессами и нерешёнными вопросами оптимальной организации их ядерного топливного цикла (ЯТЦ), который должен базироваться на плутонии и может быть только замкнутым с очень коротким (до 1 года) временем внешнего цикла (химическая переработка отработавшего топлива и дистанционно управляемое изготовление свежего топлива).
Удельные капиталовложения в АЭС с БН в настоящее время значительно (1,5-2 раза) превышают удельные капиталовложения в АЭС с реакторами на тепловых нейтронах. Сдерживающее влияние на развитие БН оказывает также пока благополучное положение в мире с ресурсами относительно дешевого урана.
Компоновка реакторной установки интегральная (бакового типа): активная зона, насосы, промежуточные теплообменники и биологическая защита размещены в корпусе реактора. Теплоноситель первого контура движется внутри корпуса реактора по трем параллельным петлям, каждая из которых включает два теплообменника и циркуляционный центробежный насос погружного типа с двухсторонним всасыванием. Насосы снабжены обратными клапанами. Циркуляция натрия в каждой петле промежуточного контура осуществляется центробежным насосом погружного типа с односторонним всасыванием. Активная зона и зона воспроизводства смонтированы в напорной камере, где расход теплоносителя распределяется по топливным сборкам соответственно их тепловыделению. Активная зона по торцам и периметру окружена экранами — зоной воспроизводства, состоящей из сборок, заполненных двуокисью обеднённого урана.
Корпус реактора представляет собой бак цилиндрической формы с эллиптическим днищем и конической верхней частью. Корпус через опорное кольцо установлен на катковые опоры фундамента. Внутри корпуса помещена металлоконструкция коробчатого типа — опорный пояс, на котором укреплена напорная камера с активной зоной, зоной воспроизводства и хранилищем, а также внутрикорпусная биологическая защита.
Три насоса первого контура и шесть промежуточных теплообменников смонтированы в цилиндрических стаканах, установленных на опорном поясе. В верхней части корпус имеет соответственно шесть отверстий для установки теплообменников и три отверстия — для насосов. Компенсация разности температурных перемещений между стаканами теплообменников и насосов, а также между корпусом и страховочным кожухом обеспечивается сильфонными компенсаторами. Стенки бака имеют принудительное охлаждение «холодным» натрием из напорной камеры. Биологическая защита состоит из цилиндрических стальных экранов, стальных болванок и труб с графитовым заполнителем. Бак реактора заключён в страховочный кожух. Верхняя часть корпуса служит опорой для поворотной пробки и поворотной колонны, обеспечивающих наведение механизма перегрузки на топливную сборку. Одновременно поворотная пробка и поворотная колонна служит биологической защитой.
Топливные сборки загружают и выгружают комплексом механизмов, куда входят: два механизма перегрузки, установленные на поворотной колонне; два элеватора (загрузки и выгрузки); механизм передачи поворотного типа, размещенный в герметичном боксе.
Паротурбинная часть выполнена из трех серийных турбин обычной теплоэнергетики мощностью по 200 МВт каждая, с начальными параметрами пара 13,0 МПа и 500 °C и промежуточным перегревом пара.