Privacy Policy Cookie Policy Terms and Conditions Analiza wymiarowa - Wikipedia, wolna encyklopedia

Analiza wymiarowa

Z Wikipedii

Analiza wymiarowa jest narzędziem powszechnie stosowanym w fizyce, chemii oraz inżynierii (głównie mechanicznej oraz chemicznej), opartym na teorii podobieństwa, stosowanym do wyznaczania warunków podobieństwa dynamicznego poprzez analizę wielkości fizycznych charakteryzujących dane zjawisko.

[edytuj] Przykład

Każdą zależność funkcyjną (nieznaną) można zapisać jako funkcję kilku parametrów fizycznych (niezależnych, np. temperatura, czas itp.), z których każdy posiada swój wymiar (w układzie SI będzie to np. metr lub sekunda). Najprostszy taki przypadek (spadek ciśnienia w przewodzie) można wyrazić jako funkcję długości przewodu (l), średnicy przewodu (d), prędkości płynu (u), lepkości dynamicznej płynu (μ) oraz gęstości płynu (ρ):

\Delta p=\it f \rm \left(d, l, u, \mu, \rho \right)
Założone parametry mają następujące jednostki:
d=\left[m \right], l=\left[m \right], u=\left[\frac{m}{s} \right], \mu=\left[\frac{kg}{m\cdot s} \right], \rho=\left[\frac{kg}{m^3} \right]

Każdą taką funkcję można wyrazić w postaci potęgowej:

\Delta p=C \cdot d^A \cdot l^B \cdot u^D \cdot \mu^E \cdot \rho^F
Gdzie litery od A do F oznaczają stałe.

Zgodnie z zasadą zgodności wymiarowej, wartość po lewej stronie równania musi równać się wartości po prawej stronie równania. Przyjmując, że ciśnienie wyraża się w \left[\frac{kg}{m \cdot s^2} \right] równanie przyjmuje postać:


kg^{1} \cdot m^{-1} \cdot s^{-2} = C \cdot m^{A} \cdot m^{B} \cdot m^{D} \cdot s^{-D} \cdot kg^{F} \cdot m^{-3F} \cdot kg^{E} \cdot m^{-E} \cdot s^{-E}

Z porównania wykładników potęgowych wymiarów po lewej oraz po prawej stronie równania powstaje układ trzech równań:

dla \left[m \right] \rightarrow -1=A + B + D - 3E - F
dla \left[kg \right] \rightarrow 1=E + F
dla \left[s \right] \rightarrow -2= - D - F

Jest to układ trzech równań z pięcioma niewiadomymi. Można go rozwiązać przyjmując dwie z pięciu wartości za znane (np.B oraz F).

\left[E \right] =\left[ 1 - F \right]
\left[D \right]=\left[ 2 - F \right]
\left[B \right]=\left[ 3E + F - 1 - C - D \right]
\left[B \right]=\left[ 3 - 3F + F - 1 - C - 2 + F \right]
\left[B \right]=\left[ -2F + F - C = -E -C \right]

Ostateczna postać wzoru:

\Delta p = C \cdot d^{-F-B} \cdot l^B \cdot u^{2-F} \cdot \mu^F \cdot \rho^{1-F}
\frac{\Delta p}{\rho u^2} = C \cdot \left( \frac{l}{d} \right)^B \cdot \left( \frac{\mu}{ud\rho} \right)^F
\frac{\Delta p}{\rho u^2} = C \cdot \left( \frac{l}{d} \right)^B \cdot \left( \frac{ud\rho}{\mu} \right)^{-F}
Eu = \it f \rm \left( \frac{l}{d}, Re \right)
gdzie Re – liczba Reynoldsa, Eu – liczba Eulera

[edytuj] Teoremat Buckinghama

Teoremat Buckinghama (znany również jako teoremat Π]) mówi, że liczba modułów bezwymiarowych równa jest liczbie niezależnych parametrów fizycznych pomniejszonych o liczbę wymiarów podstawowych (metr, sekunda, kilogram, kelwin, amper, kandela).

Jeżeli mamy mamy równanie o n miennych, można zapisać je w postaci:

\it f \rm \left( Q_1, Q_2, Q_3...Q_n \right) = 0

Jeżeli liczbę parametrów podstawowych występującym w tym równaniu oznaczymy przez r, to zgodnie z teorematem Π liczba modułów bezwymiarowych będzie równa n-r, co można zapisać:

\it f \rm \left( \pi_1, \pi_2, \pi_3...\pi_{n-r} \right) = 0

W omówionym przykładzie liczba parametrów niezależnych (n) równa jest 6, liczba wartości podstawowych występującym w tym równaniu (r) jest równa 3 (m, kg, s) tak więc liczba modułów bezwymiarowych (Π) równa jest 3.

[edytuj] Zobacz też

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu