Equazione di stato dei gas
Da Wikipedia, l'enciclopedia libera.
Indice |
[modifica] Introduzione
In fisica e termodinamica, una equazione di stato è una equazione costitutiva che descrive lo stato della materia sotto un dato insieme di condizioni fisiche. Fornisce una relazione matematica tra due o più funzioni di stato associate alla materia, come temperatura,pressione, volume o energia interna. Le equazioni di stato sono utili nella la descrizione delle proprieta dei fluidi (e delle loro miscele), dei solidi e persino per descrivere l'interno delle stella.
Oltre a equazioni che predicono il comportamento di gas e liquidi ci sono anche equazioni di stato per predire il volume dei solidi, ivi compresa la transizione tra stati cristallini differenti. Ci sono equazioni che modellano l'interno delle stelle, comprese le stelle di neutroni. Un concetto correlato è quello di fluido perfetto.
[modifica] Esempi di equazioni di stato
Nelle seguenti equazioni le variabili sono definite come segue. Si può utilizzare qualsiasi insieme coerente di unità di misura, anche se sono da preferire le unità SI
- P pressione
- V volume
- ρ densità
- n numero di moli di sostanza
- volume molare, il volume di una mole di liquido o gas
- densità molare
- T temperatura (K)
- R costante dei gas (8.314472 J/(mol·K))
[modifica] Classica (Equazione di stato dei gas perfetti)
L'equazione dei gas perfetti può essere scritta come:
L'equazione di stato dei gas ideali può anche essere espressa come:
dove ρ è la densità, γ l'indice adiabatico, ed e l'energia interna. Questa forma è scritta puramente in termini di variabili intensive
[modifica] Legge di Van der Waals
I parametri a, b e R sono costanti che dipendono dal fluido specifico. Possono essere così calcolati dalle proprietà critiche:
Proposta nel 1873, l'equazione di stato di Van der Waals è stata una delle prime equazioni a fornire risultati spiccatamente piu precisi dell'equazione di stato dei gas perfetti. In questa fondamentale equazione a viene chiamato parametro attrattivo e b parametro repulsivo o covolume. Pur essendo ben superiore all'equazione dei gas perfetti e nonostante predica correttamente la formazione di una fase liquida, l'accordo coi dati sperimentali è limitato nelle condizioni in cui il liquido si forma. Benché sia comunemente citata nei libri di testo e nelle pubblicazioni scientifiche per ragioni storiche e didattiche è ormai caduta in disuso: altre equazioni più moderne, di complessità solo lievemente maggiore, sono molto più accurate.
L'equazione di Van der Waals può essere considerata un "miglioramento" della legge dei gas ideali, sotto due aspetti:
- Le molecole vengono considerate come particelle con un volume, non come punti materiali. Quindi V non può essere troppo piccolo, minore di una data costante. Abbiamo quindi(V - b) invece di V.
- Le molecole del gas ideale non interagiscono, noi invece consideriamo le forze attrattive intermolecolari,forze avvertibili in una distanza di parecchi raggi molecolari.
[modifica] Equazione del viriale
Benché non sia l'equazione di stato più conveniente da utilizzare,l'equazione del viriale è importante perché può essere derivata direttamente dalla meccanica statistica. Con appropriate assunzioni sulla forma matematica delle forze intermolecolari, si possono derivare espressioni analitiche per ognuno dei coefficienti. In questo caso B corrisponde a interazioni tra coppie di molecole, C a interazioni tra triplette, e così via.
[modifica] Redlich-Kwong (RK)
Introdotta nel 1949 l'equazione di stato Redlich-Kwong è stata un considerevole miglioramento rispetto ad altre equazioni di quel tempo. È ancora di un certo interesse, soprattutto per la sua forma relativamente semplice. Benché superiore all'equazione di Van der Waals, non è molto precisa riguardo alla fase liquida e non può quindi essere impiegata per un calcolo accurato degli equilibri liquido-vapore. Comunque può essere impiegata per questo scopo con l'ausilio di correlazioni separate per la fase liquida.
[modifica] Redlich-Kwong-Soave (RKS)
Dove ω è il fattore acentrico per la specie.
Per l'idrogeno:
Nel 1972 Soave rimpiazzò il termine a/√(T) dell'equazione Redlich-Kwong con una funzione α(T) comprendente la temperatura e il fattore acentrico. La funzione α venne sviluppata per essere usata con fluidi idrocarburici e si comporta molto bene con questi composti.
[modifica] Peng-Robinson
Dove ω è il fattore acentrico per la specie.
L'equazione Peng-Robinson venne sviluppata nel 1976 per soddisfare i seguenti requisiti:
- I parametri avrebbero dovuto essere esprimibili in termini di proprietà critiche e fattore acentrico
- Il modello avrebbe dovuto essere ragionevolmente accurato in prossimità del punto critico, particolarmente per il calcolo del fattore di comprimibilità e della densità del liquido
- Le regole di miscelazione non avrebbero dovuto impiegare più di un singolo parametro di interazione binaria, parametro indipendente da temperatura, pressione e composizione.
- l'equazione doveva essere applicabile a tutti i calcoli delle proprietà dei fluidi utilizzati nell'ambito dei processi che utilizzavano gas naturale
Per la maggior parte, l'equazione di Peng e Robinson ha un'accuratezza simile a quella dell'equazione Redlich-Kwong-Soave, anche se è generalmente superiore nel predire la densità liquida di molti fluidi, specialmente quelli non polari
[modifica] Benedict-Webb-Rubin (BRW)
dove ρ è la densità molare (ottenibile come inverso del volume molare). L'equazione è stata scritta in termini di densità molare per motivi di praticità.
Le equazioni di stato BWR venne proposta all'inizio degli anni Quaranta per l'utilizzo nell'industria petrolchimica (si ricordi che all'epoca l'equazione RK non era ancora stata introdotta), ed ebbe un grande successo. Il suo difetto sta nel richiedere parecchi parametri, peraltro di significato fisico non ben definito.
[modifica] Benedict-Webb-Rubin-Starling (BRWS)
È una versione più precisa dell'equazione precedente.
Valori dei vari parametri per 15 sostanze si trovano in:
K.E. Starling, Fluid Properties for Light Petroleum Systems. Gulf Publishing Company (1973).
[modifica] Elliott, Suresh, Donohue (ESD)
L'equazione di stato Elliott, Suresh e Donohue (ESD) è stata proposta nel 1990. L'equazione cerca di correggere una scarsa accuratezza dell'equazione Peng-Robinson per quanto riguarda il termine repulsivo di Van der Waals. L'equazione tiene conto degli effetti di forma di una molecola non polare e può essere estesa ai polimeri tramite l'aggiunta di un ulteriore termine (qui non mostrato). L'equazione è stata sviluppata attraverso simulazioni al computer e dovrebbe catturare la fisica essenziale delle dimensioni e della forma delle molecole, nonché quella del legame idrogeno.
Where:
- c = a "`shape factor"'
- η = bρ
- q = 1 + 1.90476(c − 1)
Reference: Elliott & Lira, Introductory Chemical Engineering Thermodynamics, 1999, Prentice Hall.
[modifica] Storia
[modifica] Legge di Boyle (1662)
La legge di Boyle è stata forse la prima espressione di un equazione di stato. Nel 1662 Robert Boyle, un irlandese, compì una serie di esperimenti impiegando un tubo di vetro a J sigillato da un lato. Mise Mercurio nel tubo, intrappolando così una piccola quantità di aria nel lato sigillato del tubo, dopodiché misurò accuratamente il volume del gas man mano che aggiungeva mercurio nel tubo. La pressione del gas poteva essere determinata dalla differenza di livello del mercurio nei due lati del tubo. Attraverso questi esperimenti Boyle notò che il volume del gas variava in maniera inversa rispetto alla pressione. In termini matematici questo può essere espresso come:
- PV = constante
Questa relazione è stata attribuita anche a Edme Mariotte e ci si riferisce ad essa anche come Legge di Mariotte. L'opera di Mariotte però non venne pubblicata che nel 1676.
[modifica] Legge di Charles or Legge di Charles e Gay-Lussac| (1787)
Nel 1787 il fisico francese Jacques Charles scoprì che ossigeno,azoto, idrogeno, anidride carbonica e aria si espandono allo stesso modo lungo il medesimo intervallo di 80K. Successivamente, nel 1802,Joseph Louis Gay-Lussac pubblicò risultati di esperienze simili, che indicavano una relazione lineare tra volume e temperatura.
- V1/T1 = V2/T2
[modifica] Legge di Dalton delle pressioni parziali (1801)
Nel 1801 l'inglese John Dalton scoprì che la pressione totale esercitata da una miscela di n gas può essere definita come la somma
P = p1 + p2 + ... + pn
dove p1, p2, pn rappresentano la pressione parziale di ogni componente.
[modifica] L' Equazione di stato dei gas perfetti (1834)
Nel 1834 Émile Clapeyron combinò Le leggi di Boyle e di Charles nella prima formulazione della legge dei gas ideali. Inizialmente l'equazione era scritta come PVm=R(TC+267) (con la temperatura espressa in gradi Celsius). Indagini successive però rivelarono che il numero avrebbe dovuto essere 273.2, e in seguito la scala Celsius venne definita come 0 °C = 273.15 K, dando quindi:
- PVm=R(TC+273.15)
[modifica] Legge di Amagat (1880)
La legge di Amagat (1880) afferma che il volune di una miscela gassosa a una data temperatura e pressione è la somma del volume che avrebbero i singoli componenti alle medesime condizioni. Questa è la prova sperimentale che il volume è una grandezza estensiva. In termini matematici:
V = v1 + v2 + ... + vn
[modifica] Riferimenti bibliografici
- Benedict, M., Webb, G. B., and Rubin, L. C., "An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures: I. Methane, Ethane, Propane, and n-Butane", J. Chem. Phys., Vol. 8, No.4, pp. 334-345 (1940).
- ibid, "II. Mixtures of Methane, Ethane, Propane and n-Butane", J. Chem. Phys., Vol. 10, No. 12, pp. 747 - 758 (1942).
- ibid, "III. Constants for Twelve Hydrocarbons", Chem. Eng. Progr., Vol. 47, No. 8, pp. 419-422 (1951).
- ibid, "IV. Fugacities and Liquid-Vapor Equilibria", Chem. Engr. Progr., Vol. 47, No. 9, pp. 449-454 (1951).
- G. Soave, Equilibrium Constants from a Modified Redlich-Kwong. Equation of State, Chem. Eng. Sci., Vol. 27 pp. 1197-1203 (1972).
- Ding-Yu Peng,D. B. Robinson; Ind. Eng. Chem. Fundam., Vol. 15(1), pp. 59. [10] (1976)
- J.R. Elliott, Jr., S.J. Suresh, and M.D. Donohue,A simple equation of state for non-spherical and associating molecules, Ind. Eng. Chem. Res., Vol.29:1476 (1990).
Chimica - Fisica |
---|
Progetto Chimica | Portale Chimica | Portale Fisica | Progetto Fisica |
Glossario Fisico | Glossario Chimico | Calendario degli eventi: Fisica |