Ebooks, Audobooks and Classical Music from Liber Liber
a b c d e f g h i j k l m n o p q r s t u v w x y z





Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Evoluutio – Wikipedia

Evoluutio

Wikipedia

Tämä artikkeli käsittelee biologista evoluutiota. Muita merkityksiä on sivun täsmennyssivulla.
Geneettiset testit ovat osoittaneet, että ihmisten ja simpanssien genomit ovat 96-prosenttisesti samankaltaisia. Ihmisten ja simpanssien toiminnalliset DNA:t ovat 99,4 prosenttisesti samanlaisia,[1]  ja geeneistä 20% ei ole eroa aminohaponkaan vertaa. [2]
Suurenna
Geneettiset testit ovat osoittaneet, että ihmisten ja simpanssien genomit ovat 96-prosenttisesti samankaltaisia. Ihmisten ja simpanssien toiminnalliset DNA:t ovat 99,4 prosenttisesti samanlaisia,[1] ja geeneistä 20% ei ole eroa aminohaponkaan vertaa. [2]

Evoluutio tarkoittaa muutosta populaation geenivarastossa sukupolvien myötä. Evoluutio on asteittainen, ohjaamaton, luonnollinen prosessi, joka muuttaa populaatioiden ominaisuuksia. Sen kautta elämä on kehittynyt syntymästään lähtien nykyiseen eri eliölajien monimuotoisuuteen. Evoluution mekanismeja ovat perinnöllisyys, (jälkeläiset perivät vanhempiensa ominaisuudet) muuntelu (jälkeläiset ovat keskenään erilaisia) ja luonnonvalinta (keskenään erilaiset jälkeläiset menestyvät eri tavoin).

Elävät olennot lisääntyvät. Molekyylitason kopioinnissa tapahtuu aina virheitä, joten muutos on väistämätöntä. Jälkeläiset muistuttavat vanhempiaan, koska monet ominaisuudet periytyvät geeneissä sukusolujen mukana. Jälkeläiset eivät kuitenkaan ole täysin samanlaisia kuin vanhempansa, koska mutaatiot ja sukusolujen yhtyessä syntyvät uudet geeniyhdistelmät tuottavat uusia ominaisuuksia.

Edelleen jotkut saavat enemmän jälkeläisiä kuin toiset, jolloin uuteen sukupolveen tulee enemmän juuri näiden enemmän lisääntyneiden yksilöiden ominaisuuksia kuin edellisessä polvessa oli. Näin kukin uusi sukupolvi on vähän erilainen kuin edellinen. Loppu on pelkkää evoluution hidasta matematiikkaa. Pitkän ajan kuluessa koko laji voi muuttua paljonkin tai laji voi jakautua useaksi eri lajiksi.

Charles Darwinin kehittämä evoluutioteoria eli kehitysoppi on nykyään vallalla oleva käsitys nykyisten lajien syntymekanismista. Hänen kirjaansa Lajien synty (1859) pidetään käännekohtana teorian synnylle.

Nykyisessä evoluutioteoriassa on oikeastaan kaksi koulukuntaa: populaatiogeneettinen ja yksilöiden evoluutiota korostava. Edellinen selittää lajiutumista populaatioiden geenifrekvenssien muutoksena, jälkimmäinen puolestaan korostaa yksilöitä luonnonvalinnan ensisijaisina kohteina.

Nykyisin lajinkehityksen katsotaan olevan hyvinkin erilaista eri tilanteissa eri lajeilla. Nykyisen evoluutioteorian mukaan kehitys voidaan jakaa pitkiin suvantovaiheisiin, jolloin muutosta ei tapahdu juurikaan, ja erittäin nopean kehityksen pyrähdyksiin.

Sisällysluettelo

[muokkaa] Evoluution mekanismit

Otsikkokuva T. H. Huxleyn teoksesta Evidence as to Man's Place in Nature (1863)
Suurenna
Otsikkokuva T. H. Huxleyn teoksesta Evidence as to Man's Place in Nature (1863)

Evoluution mekanismeja ovat muun muassa luonnonvalinta, seksuaalivalinta, mutaatiot ja migraatio. Teorian mukaan luonnonvalinta johtaa populaation parempaan sopeutumiseen ympäristöönsä, sillä menestyneimmistä yksilöistä tulee lopulta vallitseva tyyppi populaatiossa tehokkaamman lisääntymisen myötä. Toisin sanoen geenit määräävät eliön ominaisuudet, ja paremmin menestyvät eliöt kantavat siis geenejä, joista tämä parempi menestys johtuu. Paremmin menestyvät yksilöt pääsevät lisääntymään useammin, ja niin niiden kantamat parempaa menestystä aikaansaavat geenit yleistyvät populaatiossa.

Ihminen itse aiheuttaa eräänlaista evoluution kaltaista kehitysprosessia jalostaessaan eläin- ja kasvilajeja. Tämä tapahtuu kuitenkin ihmisen omien etujen, ei luonnon periaatteiden, mukaisesti, ja seurauksena saattaakin olla luonnontilaan nähden epäedullisten geneettisten ominaisuuksien keräytyminen uusiin rotuihin. Darwin piti tätä ihmisten suorittamaa valintaa eräänlaisena mallina luonnonvalinnalle.

Evoluutioteoria selittää myös uusien elinten syntymisen tai aikaisemmin eri käytössä olleiden elinten uudet tehtävät. Esimerkiksi selkärankaisten nouseminen maalle tapahtui uusimpien teorioiden mukaan siten, että soisella ranta-alueella eläneet alkeelliset kalat saivat etua sellaisista evistä, joilla saattoi työnnellä vedenalaista kasvillisuutta syrjään ja tunkeutua tiheisiinkin kasvustoihin. Näin ne esimerkiksi pääsivät piiloon saalistajiaan. Tässä kalapopulaatiossa lyhyempi- ja heikompieväiset eivät pärjänneet pitempieväisten kanssa, ja pitempieväiset yksilöt saivat useammin välitettyä geeninsä jälkipolville: geenit, jotka kasvattivat yksilölle pitemmät evät. Tämän seurauksena evät pitenivät ja voimistuivat, niistä tuli miljoonien vuosien kuluessa jonkinlaiset raajojen esiasteet. Näistä oli epäilemättä myös apua vuorovesitasangoilla liikkuessa.

Lisäkehityksen jälkeen myös satunnaiset matkat kuivalle maalle onnistuivat nyt henkeä pidätellen. Näin kävi aluksi sattumalta. Kuitenkin maanpinta ravinnonhankintamahdollisuuksineen soi lisääntymisedun niille, jotka sitä hyödynsivät (edes harvoin). Näin alttius maaretkiin pikku hiljaa lisääntyi populaatiossa, ja kyky nousta maalle ja tulla siellä toimeen parani. Veden ja ilman raja oli rikottu sulavasti ja vaihe vaiheelta, ilman valtavaa evolutiivista "hyppäystä".

Sama perustelu, että hyvinkin syvälliset ja monimutkaiset muutokset voivat syntyä vähitellen, muutos pienen muutoksen jälkeen, esittää myös Darwin itse silmän kehityksen suhteen [3].

Evoluutio voi myös johtaa monimutkaistumiseen, yksinkertaistumiseen tai luonnon biodiversiteetin eli monimuotoisuuden kasvuun: elinympäristön vapaana olevaan lokeroon kehittyy yleensä jossain vaiheessa oma siihen erikoistunut lajinsa. Teoriassa ei väitetä että tämä johtaisi välittömästi uusien lajien syntyyn, mutta sille ei ole mitään estettä, ja lajiutumista on havaittu runsaasti tutkittaessa fossiileja.

Myös virukset voivat kantaa perintöainesta eliöstä toiseen.

[muokkaa] Mutaatiot

Mutaatioita sattuu koska DNA:n kopioitumisessa tapahtuu virheitä
Suurenna
Mutaatioita sattuu koska DNA:n kopioitumisessa tapahtuu virheitä

Mutaatio on eliön perinnöllinen muutos, geneettisen materiaalin eli DNA:n kopioitumisessa tapahtuva virhe. Mutaatiot ovat luonnonvalinnan raaka-aineet. Se on itse asiassa uuden geneettisen materiaalin ainoa lähde.

Mutaatioista suurin osa on neutraaleja, ts. ne eivät johda havaittaviin muutoksiin eliön elonjäämismahdollisuuksissa tai sopivuudessa elinympäristöönsä; mutaatioista, jotka eivät ole neutraaleja, suurin osa on vahingollisia tai haitallisia. Vain pieni osa on adaptiivisia eli auttavat eliötä elämään ja lisääntymään elinympäristössään; mutta tästä pienestä osamäärästä evoluutio syntyy.

Useampien eläinten ja kasvien DNA:ssa on suurehko määrä materiaalia, jolla ei ole tunnettua geneettistä roolia. Ihmisen tapauksessa tämä "roska-DNA:n" eli tilke-DNA:n osuus on peräti 97%. Tämä prosenttimäärä vaihtelee suuresti myös toisiaan lähellä olevien lajien välillä. Mutaatiot näissä alueissa ovat aina neutraaleja ja näihin ei kohdistu ns. selektiivistä painetta. Siksi ne ovat sopivia ns. "molekyylikelloja", joiden avulla eri lajien geneettiset etäisyydet voidaan mitata.

Aina on kuitenkin oltava varovainen. Se, että emme tiedä jonkin DNA-alueen käyttötarkoitusta, ei välttämättä merkitse ettei sellaista olisi olemassa. Viime aikoina on löytynyt esimerkkejä tästä juuri roska-DNA:n joukosta. Silloin molekyylikellon käytön edellytykset eivät täyty.

Hyödyllisten mutaatioiden todennäköisyys eliössä on pieni. Ja jotta kyseinen hyödyllinen mutaatio voisi periytyä jälkeläisille, sen täytyy tapahtua sukusolulinjassa, missä se ei tapahdu kuin äärimmäisen harvoissa tapauksissa. Silti niin voi tapahtua ja tapahtuukin jatkuvasti.

Esimerkiksi säteilyttämällä on saatu aikaan erilaisten eläin- ja kasvilajien sukusolulinjoihin sellaisia muutoksia, jotka ovat periytyneet jälkipolville. Eräät näistä ovat olleet eliölle eduksi. Luonnossa esiintyvä säteily on yksi mutaatioiden aiheuttaja, mutta koska luonnossa säteily on huomattavasti alhaisempaa kuin säteilytyskokeissa, tapahtuu luonnossa mutaatioita paljon harvemmin. Luonnossa kuitenkin on aikaa sekä yksilöitä huomattavasti enemmän "käytettävissä" kuin säteilytyskokeissa, joten edullisia mutaatioita syntyy lähes välttämättä pitkien aikojen kuluessa, vaikka ne ovat harvinaisia ihmisten aikaskaalalla.

Edullisen mutaation tunnistaa siitä, että sen saaneet eliöt menestyvät sukupolvesta toiseen. Niitä, jotka eivät saa yksilöä menestymään, kutsutaan haitallisiksi tai neutraaleiksi mutaatioiksi. Vähänkin edulliset mutaatiot toisinaan leviävät, ja tulevat vallitsevaksi tyypiksi populaatiossa. Silloin edullisen mutaation saaneet ovat enemmistössä, ja seuraavan edullisen mutaation saa luultavimmin joku edellisen mutaation saanut yksilö. Näin edulliset mutaatiot kasautuvat. Mitä tekee tätä kasautumista vielä nopeammaksi, on ns. sukupuolellinen lisääntyminen, jonka seurauksena geenit "sekoitetaan" kuin korttipakka ja populaation eri osissa yhtä aikaa sattuneet hyödylliset mutaatiot saadaan yhdistetyksi yhteen yksilöön. Näin evoluutio muuttuu "rinnakkaisprosessoinniksi".

Konkreettinen esimerkki on paikallaan. Jos laji hyötyy nykyisessä ympäristössään vaikkapa pitkistä jaloista, jalan pituutta, ja sitä kautta nopeutta kasvattavat mutaatiot ovat edullisia mutaatioita. Koska nopeammat esimerkiksi pääsevät paremmin pakoon saalistajiaan, ne pääsevät lisääntymään useammin, ja monen sukupolven aikana on todennäköistä, että pitempijalkaisuuden geenit tulevat yleisiksi ominaisuuksiksi populaatiossa. Nämä pidempijalkaiset voivat saada myös muita edullisia mutaatioita, jolloin mutaatiot todellakin kasautuvat. Ja mikäli laji on jakaantunut useammalle eristäytyneelle alueelle, nämä edulliset mutaatiot tai niiden kasaumat eivät tietenkään kulje kaikkien lajin edustajien saataville. Pian mutaatioita on kertynyt niin paljon, etteivät eri kantojen edustajat ole keskenään lisääntymiskykyisiä. Tällöin on tapahtunut lajiutuminen edullisten mutaatioiden kasaantumisen seurauksena.

[muokkaa] Lajiutuminen

Pääartikkeli: Lajiutuminen
Lajiutumisen kolme mekanismia
Suurenna
Lajiutumisen kolme mekanismia

Missä tahansa eliöpopulaatiossa yksilöiden ominaisuudet vaihtelevat hieman sekä perimästä että ympäristöstä johtuen. Siten tapahtuu väistämättä niin, että tietyt ominaisuudet suosivat lisääntymistä enemmän kuin toiset, ja tästä syystä nämä ominaisuudet yleistyvät populaatiossa. Elinolosuhteiden muuttuessa (ilmasto, maantiede, sattuma, muiden eliölajien vuoksi) saattaakin olla, että jotkin toiset ominaisuudet edesauttavat lisääntymistä enemmän kuin muut, jolloin ne vuorostaan alkavat lisääntyä populaatiossa. Tästä syntyy vähitellen lajiutumista, eritoten jos populaatio jakautuu kahteen tai useampaan osaan, esimerkiksi maantieteellisistä syistä, joten populaatioiden kesken ei juurikaan tapahdu geenienvaihtoa. Näin kehityshaarat erkanevat hiljalleen toisistaan ja lopulta yksi kantamuoto on lajiutunut eri lajeiksi, jotka eivät ole lisääntymiskykyisiä keskenään.

Lajiutuminen on yhden lajin kehittyminen useammaksi. Lajiutumiselle erotetaan kolme mekanismia:

  • Allopatria: populaation osat elävät maantieteellisesti erillään.
  • Sympatria: populaation osat elävät samassa maantieteellisellä alueella, mutta eri ekologisissa lokeroissa.
  • Parapatria: populaation osat elävät maantieteellisesti vierekkäin.

Kaikissa tapauksissa osapopulaatioiden geneettiset ominaisuudet muuttuvat satunnaisesti kumuloituvien mutaatioiden seurauksena yhä enemmän erilleen. Lopulta eri populaatiot ovat geneettisesti niin kaukana toisistaan, etteivät ne pysty enää saamaan keskenään lisääntymiskykyisiä jälkeläisiä. Näin on syntynyt kaksi lajia.

Parapatrian erikoistapaus on ns. rengaslaji (ks. Ring Species), jossa on kyse monesta vierekkäisestä populaatiosta, jotka kaikki lisääntyvät naapurinsa kanssa, mutta ääripäät eivät enää lisäänny keskenään.

Ehkä tunnetuin esimerkki lajiutumisesta on darwininsirkkujen erikoistuminen 13:ksi eri lajiksi Galápagossaarilla yhdestä saarille saapuneesta kantalajista. Niiden nokat ovat erikoistuneet erilaisten ravintolokeroiden täyttämiseen. Siitä myös Darwin sai ideansa lajien synnystä.

[muokkaa] Migraatio

Pääartikkeli: Migraatio

Migraation rooli evoluutiossa on se, että tietyssä paikassa alkuperänsä saanut uusi, hyödyllinen perinnöllinen piirre valtaa tietyn ajan kuluessa koko populaatiota. Mitä suurempi yhtenäinen populaatio, sitä suurempi myös mutaatioiden määrä, myös hyödyllisten mutaatioiden määrä, joka on tästä vain pieni murto-osa. Eli mitä suurempi populaation koko yksilöinä, sitä nopeammin evoluutio edistyy.

Populaatiosta tulisi kuitenkin vaatia, että yksilö voi fyysisesti matkustaa paikasta toiseen populaation sisällä. Kuivalla maalla eläville organismeille esim. se tarkoittaa, että on oltava yhtenäinen kuiva maa-alue.

Jos koko maapallo olisi tässä merkityssä yhtenäinen, olisi kaikkialla maapallolla vain ja ainoastaan samat lajit, yksi laji per ekologinen lokero. Näin ei kuitenkaan ole, ja siksi voi löytyä eristyksissä toisistaan monta samanlaista lajia.

Tästä vaikuttavin esimerkki on Australia. 45 miljoona vuotta sitten Australian mannerlaatta erosi lopullisesti etelämantereelta ja purjehti pois, niin, että Australiassa elävät oliot kehittivät eri tavalla (ja paljon hitaammin) kuin eliöt muualla.

Yli 100 miljoona vuotta sitten kaikki nisäkkäät olivat vielä pussieläimiä. Vasta myöhemmin kehittyi nykyiset plasentaaliset nisäkkäät, jotka synnyttävät jälkeläistensä meille tutulla tavalla. Nämä kehittyivät Australian ulkopuolella eivätkä enää mannerlaattojen eri jakautumisten ja liikkumisien kautta päässeet Australiaan.

Australiassa elävät edelleen pussieläimet ja ovat sopeutuneet samoihin eri ekologisiin lokeroihin kuten muussa maailmassa. Esim. missä muussa maailmassa on susia, hiiriä ja myyriä, on Australiassa pussisusi, -hiiri ja -myyrä. Tämä on myös esimerkki konvergenssista.

[muokkaa] Evoluution todisteet

Evoluutio on historiallinen prosessi, eikä sitä voida todistaa perinteisillä väitteillä tai menetelmillä, joilla todistetaan puhtaasti fysikaaliset tai funktionaaliset ilmiöt. Tietyt evolutiiviset tapahtumat, ja evoluutio kokonaisuudessaan on pääteltävä havaintojen perusteella. Näitä päätelmiä on testattava yhä uudestaan uusia havaintoja vasten, jolloin alkuperäiset havainnot saavat vahvistusta tai ne kumoutuvat.[1] Eli menneisyyden evoluutiota ei voi tutkia kokeellisesti, mutta nykyistä voi, ja epäsuorien todisteiden avulla evoluutiota voidaan historiallisena ilmiönä testata.

[muokkaa] Fossiiliset todisteet

Fossiiaineisto on vakuuttavin näyttö evoluution tapahtumista. Tiettynä ajanjaksona eläneiden eläinten ja kasvien jäännöksiä löytyy kivettyneinä hyvinkin vanhoissa geologisissa kerrostumissa. Varhaisempi kerros sisältää aina seuraavasta kerroksesta löytyvien fossiilien kantamuotoja. Tuoreimpien kerroksien sisältämät fossiilit ovat usein hyvin samannäköisiä kuin nykyisin elävät eläimet. Mitä kauemmaksi mennään, sitä enemmän fossiilit poikkeavat nykyisistä eläimistä. Darwin päätteli, että juuri tätä voitiin odottaa, jos varhaisimmista kerroksista löytyneet eläimet ja kasvit olivat asteittain kehittyneet myöhäisemmistä kerroksista löytyneiksi lajeiksi.

Fossiileista saadun tiedon kertyminen tarkentaa toistaiseksi hyvin aukkoista kuvaa nykyajan lajien oletetuista esi-isistä, sukulaisuuksista ja synnystä. Fossiiliaineisto on tavallisesti "töksähtelevää", on yleensä harvinaista löytää katkeamaton fossiilien sarja, josta näkisi kantalajin muuttuvan vähittäin toiseksi lajiksi. Vain murto-osa kaikista maapallolla eläneistä eliöistä on fossiloitunut. Moni kerrostuma sijaitsi alueelle, joka huuhtoutui tai tuhoutui mannerlaattojen liikkuessa. Kerrostumat taittuivat, litistyivät tai muuttivat muotoaan tuhoten fossiiliaineiston, lisäksi maan päälle ulottuu nykyisin vain murto-osa fossiileja sisältävistä kerrostumista.

Esimerkiksi lintujen ja nisäkkäiden oletetaan kehittyneen matelijoista, ja jo vuonna 1861 löydettiin Archaeopteryxin (höyhenpeitteinen lintulisko) fossiili, joka oli välimuoto lintujen kehityksessä. Fossiileja jotka täyttävät tyhjän aukon kutsutaan puuttuviksi lenkeiksi. Jotkut fossiililinjat ovat melko täydellisiä, kuten kehityslinja nisäkäsliskoista nisäkkäiksi, valaiden evoluutio ja hevosen heimon evoluutio kantalajista (Eohippus) nykyiseen hevoseen (Equus). Myös ihmisen esi-isät muodostavat vaikuttavan sarjan välimuotoja nykyiseen ihmiseen.

[muokkaa] Molekyylibiologiset todisteet

Vertailemalla homologisia geenejä tai homologisia molekyylejä kahden eliön välillä, voidaan päätellä miten samankaltaisia ne ovat. Molekyylit kuitenkin muuttuvat eri tahdissa, hyvinkin nopeasti ja toiset hitaasti, mikä voi aiheuttaa ongelmia. Molekyylejä jotka muuttuvat hyvinkin tasaisella nopeudella, käytetään useimmiten molekyylikellona. Menetelmää on kuitenkin sovellettava varovasti, sillä molekyylikellot eivät aina käy niin tasaisella nopeudella kuin oletetaan. Eri molekyyleillä on useasti eri muutosvauhti, mutta yksittäinenkin molekyylin muutosvauhti voi muuttua ajan kuluessa. Tämä edustaa ns. mosaaiikkievoluutiota. Ristiriitaisissa tapauksissa määritetään jonkin toisen molekyylin muutosvauhtia tai yritetään etsiä parempia fossiilitodisteita.

Molekyylikellomenetelmä ei ole ongelmaton: kellojen kalibrointi voi olla vaikeaa ja kellojen "tikitysnopeus" riippuu mm. siitä, kohdistuuko tiettyyn geenisekvenssiin ns. selektiivinen paine. Parhaat molekyylikellot ovat ns. tilke-DNA-alueet, jotka eivät koodaa mitään proteiinia eivätkä siis tule ilmentyneeksi fenotyypissä. DNA-alueet, jotka koodaavat toimivaa proteiinia (eli geenit), muuttuvat yleensä paljon hitaammin, koska mutaatiot toimivassa geenissä ovat suurilta osin vahingollisia ja siksi luonnonvalinta hoitaa ne pois populaatiosta.

Molekyylikelloista saatu luotettava tieto vahvistaa suurilta osin ne samat polveutumissuhteet lajien välillä, jotka saatiin selville jo vertailevasta anatomiasta ja fossiilisesta aineistosta. Näennäiset ristiriidat liittyivät yleisesti tapauksiin, jossa polveutumistilanne oli alun perin anatomian ja fossiilien perusteella epäselvä.

Toinen menetelmä näiden sukulaissuhteiden selville saamiseksi geneettisistä sekvensseistä perustuu ns. plagioituihin virheisiin. Tilke-DNA alueissa on monien toimivien geenien kopioita, jotka ovat vahingoittuneet siten, että ne eivät enää toimi. Tällaisista lajeille yhteisistä virheistä voidaan päätellä, että virheet ovat olleet olemassa jo ennen lajien erkaantumista. Esimerkki tällaisesta tapauksesta on kädellisille yhteinen mutaatio, jonka takia ne eivät pysty valmistamaan C-vitamiinia toisin kuin lähes kaikki muut nisäkkäät. (Marsutkaan eivät pysty valmistamaan C-vitamiinia itse, mutta niillä mutaatio on erilainen.)

Molekyylibiologian ilmaantumisen myötä huomattiin, että myös molekyylit kehittyvät samalla tavalla kuten somaattiset rakenteet. Mitä lähempänä kaksi lajia on toisiaan, sitä samankaltaisempia myös niiden molekyylit ovat. Monissa tapauksissa morfologisen aineiston epäselvyys on herättänyt epäilyksiä, mutta molekyylejä vertailemalla on saatu paljastettua lajien todellinen suhde. Molekyylibiologia on nykyisin yksi tärkein tietolähde tutkittaessa fylogeneettisiä suhteita.

[muokkaa] Johtopäätökset evoluution todisteista

Tutkimalla mitä tahansa biologian aluetta, se tarjoaa todistusaineistoa evoluution puolesta. Mitään muuta luonnollista selitystä eri biologian tosiasioille ei ole löydetty, kuin evoluutio.

[muokkaa] Yhteinen esi-isä

Pääartikkeli: Elämän alkuperä

Tähtitieteellisten ja geofyysisten todisteiden valossa on arvioitu maapallon syntyneen noin 4,57 miljardia vuotta sitten. Arvioiden mukaan Maa kehittyi elinkelpoiseksi noin 3,8 miljardia vuotta sitten, jolloin nähtävästi elämä syntyi, mutta emme tiedä miltä se näytti. Elämä muodostui yhteenkerääntyneistä makromolekyyleistä, jotka kykenivät ottamaan aineita ja energiaa ympäröivistä elottomista molekyyleistä sekä Auringon säteilystä. Ensimmäiset vakavasti otettavat teoriat elämän synnystä esitettiin 1920-luvulla.

Darwin ehdotti, että kaikilla eliölajeilla on yhteinen esi-isä; jokainen eliö on kehittynyt samasta alkueliöstä, joka on elänyt ainakin 3,5 miljardia vuotta sitten. Se, että kaikki maapallon eliöt käyttävät samanlaista perintöainesta (DNA), samanlaista transkriptiomekanismia DNA:sta proteiiniin (ja käytännössä samaa kolmen emäksen kooditaulukkoa) sekä energiantuotantoon ATP:tä, tukevat tätä. Myös kaikkien proteiinien aminohappojen ja monen muun molekyylin vasenkätisyys voidaan näin helposti selittää.

Helposti syntyvä väärinkäsitys on, että tämä "yhteinen kantaisä/-äiti" oli yksin maailmassa. Luultavammin se oli vain yksi yksilö jo elämäntäytteisessä valtameressä. Kaikki muut ovat kuitenkin epäonnistuneet jatkamaan sukuaan näihin päiviin saakka. Toinen väärinkäsitys on, että se olisi maapallon ensimmäinen eliö. Realistisempi kuva on, että se oli pitkän kehitysprosessin lopputulos, jonka varhaisimmat vaiheet eivät välttämättä olleet edes yksiselitteisesti "eläviä". Varhaisissa vaiheissa elämä on saattanut syntyä yhä uudestaan, mutta siitä emme tiedä nykytietämyksellä kovinkaan paljoa, koska esimerkiksi koskemattomia kerroskivilajeja 3,8-3,5 miljardin vuoden takaa Maan alkuajoilta on lähes mahdotonta löytää (ei tiedetä nykyisin) ja tarvittaisiin hapeton ilmakehä muiden epätavallisten olosuhteiden lisäksi. Ihmisillä ei ole nykyisin mitään tietoa elämän 300 ensimmäisen miljoonan vuoden ajalta, ja laboratorioissa ei olla vielä pystytty tuottamaan elämää, mutta täysin mahdotonta tekniikan ja tietämyksen kehittyessä se ei luultavasti ole. Jo 3,5 miljardin takaisista kivistä on löydetty rikasta bakteerilajistoa.

Kuitenkin kaikkien ensimmäisten elämän pioneerien oli ratkaistava monta ongelmaa, suurimpina miten hankkia energiaa ja kopioitua. DNA-molekyylejä pidetään välttämättöminä kopioitumiselle, mutta sen valikoitumiselle siihen tehtävään ei nykyisin tiedetä kunnollista teoriaa. Sen tehtävän uskotaan kuitenkin olleen aluksi toissijainen, ja sitä edeltäneen RNA-maailman, missä tapahtui proteiinisynteesiä, ja josta puuttui DNA-välitteisen proteiinisynteesin tehokkuus.

[muokkaa] Yksilön kehitys ja elinten alkuperä

Kun monisoluinen organismi kehittyy munasolusta, alkaa ennen pitkää kehittyä erityyppisiä kudoksia ja muodostua elimiä. Prosessi on monivaiheinen ja peräkkäiset vaiheet ovat geenien ohjaamia.

Eri eläimillä voi olla hyvin samannäköisiä elimiä. Esim. hyönteisillä ja linnuilla on siivet, delfiineillä, pingviineillä ja kaloilla on evät, jne. Toisaalta eri eläinlajeilla voi olla hyvinkin erinäköiset elimet, kuten evät, siivet ja kädet, joilla voi erilaisuudesta huolimatta olla yhteinen alkuperä.

Samannäköisyys ja sama toiminnallinen funktio eivät välttämättä merkitse samaa evolutiivista historiaa. Jos samanlaisilla ja samaa toimintaa suorittavilla eläimillä ei ole samaa kehityksellistä (embryologista) taustaa, kyse on analogisista elimistä. Hyönteisten ja lintujen siivet tai nisäkkäiden ja mustekalojen silmät ovat analogisia elimiä.

Nisäkkäiden etujalat ja lintujen siivet puolestaan ovat alkiovaiheensa alussa hyvin samanlaisia ja sitten erilaistuvat omiin tehtäviinsä. Tätä kutsutaan homologiaksi.

Evoluutioteorian mukaan yksilöiden kehityksen yhtäläisyys edustaa lajien yhteistä alkuperää ja kehityksen yhtäläisyyttä. Räikeästi yksinkertaistaen lajin vanha kehityspolku näyttäytyy ainakin osittain jokaisen yksilön alkionkehityksessä.

Evoluutioteoria ennustaa, että eri eläinlajit, joilla on yhteisesti homologiset elimet, ovat "lähisukulaisia". Ja näin on yleisesti havaittu: mitä enemmän todisteita, että lajit ovat lähellä toisiaan, sitä enemmän löytyy myös elinten homologioita. Evoluution edellyttämä sukulaisuussuhde eli "yhteinen polveutuminen" on ainoa teoria joka vaatii tätä, ja sen puuttuminen olisi evoluutioteorian kohtalokas vastatodistus.

Mielenkiintoisia ovat myös ns. rudimentaariset eli surkastuneet elimet: ihmisillä mm. viisaudenhammas ja umpilisäke. Darwin itse mainitsi Boa-käärmeiden surkastuneet takatassut. Muilla käärmeillä sellaisia löytyy vain alkiovaiheessa eikä enää aikuisyksilössä. Myös linnuilla on alkiovaiheessa hampaiden alkuja (vrt. Archaeopteryx), jotka sitten häviävät.

[muokkaa] Teorian synty

Pääartikkeli: Evoluutioteorian historia
Charles Darwin, evoluutioteorian isä
Charles Darwin, evoluutioteorian isä

Ihmisten käsitys evoluutiosta perustuu 250 vuoden tieteelliseen tutkimuksen. Ihmisille ominaista on ollut aina halu selittää ja ymmärtää outoa ja tuntematonta. Alkujaan luonnontieteiden tason ollessa heikkoa, heimojen myytit, uskonnolliset ja filosofiset vastaukset tarjosivat ratkaisun lukuisiin ihmisiä askarruttaneisiin kysymyksiin. 1600-luvulla tieteellisen vallankumouksen myötä evolutionismi nosti päätään. Tieteellisen ajattelun kannalta maailmaa ei voitu ajatella enää fyysisten lakien kenttänä, vaan sille piti lisätä historia - ja ennen kaikkea elollisessa maailmassa ajan mittaan tapahtuvat muutokset. Vähitellen evoluutio käsite valjastettiin edustamaan näitä muutoksia. Evoluutinen ajattelu levisi 1750-1850 biologian lisäksi kielitieteeseen, filosofiaan, sosiologiaan, taloustieteeseen ja muille aloille. Dramaattisin muutos staattisesta maailmankuvasta evolutiiviseen maailmankuvaan tapahtui 24. marraskuuta 1859, jolloin Charles Darwinin kirja Lajien synty julkaistiin.

Charles Darwin oli jo opiskellut yliopistossa teologiaa, geometriaa ja klassikoita, mutta hänellä ei ollut vielä luonnontieteellistä koulutusta, joten vuonna 1831 hän lähti maailman ympäri purjehtivan HMS Beagle -aluksen mukaan. Koko matkan tärkein vaihe oli kuukausi Galápagossaarilla, yksinäisellä saariryhmällä Ecuadorista länteen. Siellä hän huomasi, että jokaisella saarella näytti olevan aivan oma peippotyyppinsä. Yhdenkin saaren eri lokeroissa elivät eri peippolajit. Kuitenkin ne olivat selvästi peräisin samasta kannasta.

Se, mitä Darwin matkalla näki, teki hänet vakuuttuneeksi siitä, etteivät lajit säily muuttumattomina, vaan että ne pystyvät mukautumaan uusiin oloihin. Jäljelle jäi vain kysymys, miten muutos tapahtuu.

Vuonna 1838, lokakuun 3. päivänä hän sai äkillisen oivalluksen lueskellessaan Thomas Malthusin teosta väestöjen kasvusta. Malthusin teoksessa väitettiin, että väestö lisääntyy räjähdysmäisesti, ellei mitään esteitä ole. Darwin ajatteli, että syntyvästä ylijäämästä menestyivät ne, joilla oli olosuhteiden kannalta suotuisia muutoksia, ja ne, joilla oli epäsuotuisia muutoksia, hävisivät. Tästä periaatteesta käytetään nimitystä luonnonvalinta. Olosuhteet eli ympäröivä luonto valitsee, mitkä yksilöt jäävät eloon. Olosuhteiden muuttuessa myös laji kehittyy uusien olosuhteiden mukaiseksi.

Juuri, kun Darwin oli saamaisillaan pääteoksensa valmiiksi, ilmeni, että Alfred Russell Wallace oli Malaijien saaristossa tullut samoihin johtopäätöksiin kuin Darwin.

Darwinin pääteos Lajien synty ilmestyi marraskuun 24. päivänä vuonna 1859. 1250 kappaleen painos myytiin loppuun seuraavana päivänä.

[muokkaa] Evoluutioteorian historian vaiheita

Pilakuva Charles Darwinista apinana (1871)
Suurenna
Pilakuva Charles Darwinista apinana (1871)

Geologeja alkoi jo 1700-luvulla askarruttaa kysymys siitä, mistä sukupuuttoon kuolleiden eläinten jäännökset kallioperässä olivat peräisin. Aluksi tätä yritettiin selittää siten, että nämä eläimet olivat kuolleet vedenpaisumuksessa. Vedenpaisumuskertomukset ovat yleismaailmallisia, ja sellainen löytyy myös Raamatusta. Asiaa mutkisti se, että alemmista kerroksista löytyi "vedenpaisumusta" edeltäneitä eläimiä, jotka näyttivät edustavan jotenkin alkukantaisempaa kehitysvaihetta.

Maapallon ikälaskelmaa jouduttiin kuitenkin tarkistamaan, siihen lisättiin 80 000 vuotta. Nykyaikaisen geologian isänä tunnettu Charles Lyell osoitti kuitenkin vuonna 1830, että ihminen asui hyvin iäkkäällä planeetalla.

Charles Darwinin teoriat herättivät runsaasti vastustusta heti julkaisunsa jälkeen pudottamalla ihmisen luomakunnan kruunun paikalta muiden eliölajien joukkoon. Ajatus ihmisestä eläimen sukulaisena herätti inhoa, ja lehdissä julkaistiin pilapiirroksia Darwinista apinaserkkujensa kanssa. Toinen ajatus oli, että ihmisistä tulisi julmia ja moraalittomia, koska he ovat periytyneet eläimistä. (katso: naturalistinen virhepäätelmä)

Tärkeässä osassa kiistassa kehityksen kannattajien ja luomisen kannattajien välillä oli Charles Darwinin isoisä Erasmus Darwin, joka päätyi siihen lopputulokseen, että kaikki elolliset oliot ovat yhteisen esi-isän jälkeläisiä. Ihmisen hän sijoitti apinoiden sukulaiseksi. Jean-Baptiste Lamarck rakensi Erasmus Darwinin pohjalle ja yritti selittää, että esimerkiksi kirahvin pitkä kaula olisi syntynyt sukupolvia seuranneesta kaulan venyttämisestä. Lamarck oli sitä mieltä, että hankitut ominaisuudet periytyvät. Tämä väite on sittemmin osoitettu täysin paikkansapitämättömäksi.

Pian löydettiin ensimmäiset esi-ihmisten kallot. Aluksi niiden merkitystä ei kuitenkaan ymmärretty. Kun vuonna 1856 löydettiin ensimmäiset Neandertalin ihmisen luurangot, niiden väitettiin kuuluneen raakalaisille, ja suurin osa luista hävisi. Vuonna 1868 löydettiin Cro-Magnonin ihmisen jäännöksiä.

[muokkaa] Johtopäätöksiä

Uuden ajan aatehistoriassa on tapana puhua kahdesta suuresta vallankumouksesta. Ensimmäinen vallankumous oli maakeskeisen todellisuuskäsityksen sortuminen. Tähtitieteilijä Kopernikuksen mukaan tätä ensimmäistä vallankumousta, joka tapahtui noin neljäsataa vuotta sitten, kutsutaan kopernikaaniseksi vallankumoukseksi. Toinen mullistus alkoi, kun Darwin osoitti, että ihmiskuntakin on osa luontoa eikä suinkaan mikään erillinen ilmiö.

Kehitysoppi on yleisesti hyväksytty tieteellinen hypoteesi. Darwinistinen evoluutioteoria on tiedeyhteisön enemmistön näkemys lajien monimuotoisuuden synnystä, erimielisyyttä on lähinnä teorian yksityiskohdista.

[muokkaa] Katso myös

Commons
Wikimedia Commonsissa on lisää materiaalia aiheesta evoluutio.

[muokkaa] Kirjallisuutta

[muokkaa] Lähteet

  1. Ernst Mayr - Evoluutio, sivu 37, WSOY, 2003, ISBN 951-0-27897-1

[muokkaa] Aiheesta muualla

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com