Ebooks, Audobooks and Classical Music from Liber Liber
a b c d e f g h i j k l m n o p q r s t u v w x y z





Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Élet - Wikipédia

Élet

A Wikipédiából, a szabad lexikonból.

Ernst Haeckel 1866-os Generelle Morphologie der Organismen c. művében az "élet fája"
Nagyít
Ernst Haeckel 1866-os Generelle Morphologie der Organismen c. művében az "élet fája"

Az élet az anyag legmagasabb rendű szerveződése, definiálása a természettudományok legnehezebb feladatai közé tartozik. Az életnek eddig nem sikerült megadni az egész tudományos közösség által elfogadott tömör, tudományos meghatározását . Biológiai értelemben mindenesetre az élet a biológiai rendszerek, vagyis az élő szervezetek létezési módja.

Tartalomjegyzék

[szerkesztés] Az élet fogalma

A legkisebb olyan biológiai rendszert, amely már önállóan életjelenségeket mutat sejtnek nevezzük. A legkisebb olyan biológiai rendszert pedig amelyik más élő rendszerektől függetlenül képes fennmaradni bioszférának nevezzük. Bioszférából jelenleg csak egyet, a földi bioszférát ismerjük, de feltételezzük, hogy máshol is létezhet ˙(lásd asztrobiológia).

Az élő szervezetek a létezésük során a következő jellegzetességeket mutatják (e jellegzetességek egyben szerepet játszhatnak az élő és élettelen közötti vékony határ meghatározásában):

  • Autonómia : Egy rendszernek képesnek kell lennie az önállóságra, azaz a saját szervezetének önálló fenntartására.
  • Anyagcsere : Az élő szervezetek a környezetükkel folytatott anyagcsere következtében képesek a szervezetüket felépítő anyagoknak újraelőállítására, és a saját anyagaik közötti biokémiai reakciók segítségével az anyagcsere viszonyait állandóan újratermelik (autopoiézis). Ennek eredménye a szervezetük autonóm fenntartása. A környezetükből felvett tápanyagok átalakításai során energiához is jutnak; ez az energia szükséges a biokémiai folyamatok lezajlásához és számos más életműködéshez is. Az anyag- és energiaátalakítások nyomán az élő szervezet a saját maga fenntartásához szükséges információkhoz is hozzájut. A kémiai anyagátalakítások során felszabadult energia egy része hőenergiaként elvész (az nem hasznosítható másra, egyedül a test melegítésére). A saját test felépítésében és energianyerésre már nem hasznosítható hulladékanyagokat az anyagcsere folyamán az élő szervezetek kiiktatják magukból (kiválasztás). Az anyagcsere biokémiai reakcióinak irányai és sebességei változhatnak bizonyos határok között, de az anyagok áramlásának alapvető szerkezete nem módosulhat. Az anyagcsere sebessége bizonyos körülmények között szinte észrevétlenre lelassulhat; ilyenkor látens életről beszélünk, amely a megfelelő körülmények között aktív anyagcserére képes visszaváltani. Egyes állatok (pl. békafajok) képesek rendkívül alacsony hőmérsékleten lelassítani, utána pedig újraindítani életfolyamataikat, viszont a folyamat egésze során élőnek tekintendők.

Az anyagcserét biokémiai szempontból megfelelően ragadja meg az alábbi idézet: „"Az anyagcsere egy átfogó folyamat, melyen keresztül az élő rendszerek szabad energiát használnak fel a különböző életfolyamataik működése érdekében. Ezt úgy teszik, hogy a tápanyag oxidációjának exergonikus reakcióit az élő állapot fenntartásához szükséges endergonikus folyamatokhoz használják fel. Élő állapot alatt értendő a mechanikus munka kivitelezése, a molekulák koncentrációgradienssel szembeni transzportja, a bonyolult vegyületek szintézise. Ezért lehet kijelenteni, hogy a tűz nem élő, hiszen minden tüzelőanyagának oxidatív energiáját kibocsátja mint hőt."” (Donald Voet és Judith Voet, Fundamentals of Biochemistry, ISBN 0471586501) A biológiai szerveződésű anyagcserét azért kell legalapvetőbbnek tekinteni az élet szempontjából, mert az élet a bonyolultan szerveződött anyagcsere biokémiai reakcióhálózata működésének emergens következménye. Nem azonos magával az anyagcserével, de a biológiai anyagcsere létrehozza azokat az életműködéseket, amelyek epifenoménje az élet maga.

  • Állandóság és változékonyság (variabilitás) : Mivel a darwini kényszer alatt áll egy élőlény, ezért tudnia kell alkalmazkodni, különben a környezeti változások miatt elpusztul. Az állandóságot az anyagcsere biokémiai hálózata adja, de ennek folyamatai bizonyos határok között változhatnak.
  • Az állandósággal és a változékonysággal függ össze az élő szervezeteknek az a képessége, hogy a környezet hatótényezőit detektálni képesek (azaz ingerek hatásai érik őket), ezekre jellegzetes válaszreakciót is tudnak adni, vagyis ingerlékenységet mutatnak. Az ingerlékenység éppen az anyagcsere-reakcióik bizonyos mértékű eltolódásait és az életműködéseik olyan mértékű megváltozásait jelentik, amelyeket az élő szervezet még elvisel (tolerál). Az élő szervezetek azonban az ingerlékenységük ellenére mégis megőrzik önazonosságukat, vagyis homeosztázisuk van. Az élet csak addig áll fenn, ameddig a szervezet homeosztatikus. Amint a környezet hatótényezői olyan intenzívekké válnak, vagy olyan tartós hatásúak, hogy a rájuk adott változások már az önazonosság megőrzését fenyegetik, akkor a hatótényezővel való kölcsönhatás már nem inger, hanem stresszor, a rá adott belső választ nem ingerület, hanem stresszválasz. Ez a stresszválasz a szervezet önépítő képességét kimerítheti, így ha a stresszor hatása továbbra sem szűnik, a szervezet elpusztulhat (megszűnik élni, mert elveszti homeosztatikus képességét). Előfordulhat azonban az is, hogy a stresszor hatására vagy a stresszválasz következtében az élő szervezete egy másik homeosztatikus állapotba jut, és ezt a másik állapotát képes megőrizni (ez a krónikus betegség állapota).

Bár sokan és sokszor vélték úgy, hogy az élő szervezetek önreprodukciója, azaz szaporodása mint az élő szervezetek alapvető életműködése szükséges az élet létezésének megállapításához, a valóságban a reprodukció magának az életnek sem nem szükséges, sem nem elégséges feltétele. Számos élettelen jelenség (pl. a bozóttűz) is képes magához hasonló jelenséget produkálni és azt terjeszteni is. Másrészt viszont az élő öszvér vagy a hangya egyed nem képes szaporodni. A reprodukció csak az egyedek fölötti szerveződések önmegőrződéséhez szükséges, az egyedi szervezetek életéhez nem; ez azt is jelenti, hogy az élet és a biológiai evolúció egységei nem azonosak.

[szerkesztés] A fogalomalkotást nehezítő tényezők

Önmagukban az egyes életjelenségek sem definiálják megfelelőképpen az életet. Pl.

  • Táplálkozás : A hurrikán is "táplálkozik", hiszen anyagot vesz fel és növekszik általa, mégsem tekintjük élőnek. Ezért az élő szervezetek táplálkozását szigorúan specifikusan kell meghatározni, az nem pusztán anyag- és energiafelvétel.
  • Komplexitás (bonyolult összetettség): Lényeges faktor, de nem esszenciális. Az élővilág evolúciója során nagyon gyakori volt az egyes szervezetek leegyszerűsödése, főleg akkor, ha a funkcióik egy részét más szervezetek elvégezték helyettük (pl. élősködők, szimbionták).
  • Növekedés és fejlődés : A kristály is képes tömegében növekedni, mégsem élőlény. Még a minőségi változások sorozata (a fejlődés) sem csak az élő szervezetek vagy biológiai rendszerek sajátossága, hanem egyetemesnek látszó jelenség lehet (fejlődik pl. a körülöttünk levő világegyetem is).
  • Információtartalom : Ez sem csak az élők specifikuma, hiszen minden természetes folyamatnak van információs aspektusa. Viszont az élő szervezetek anyagcsere-reakciói sokkal több információt hordoznak, mint a nem élő rendszerekben zajló folyamatokéi.
  • Hardver–szoftver keveredése : A „szoftver” és „hardver”, azaz a főleg információtároló nukleinsav és a működéseket irányító fehérje szoros kapcsolata elengedhetetlen.
  • „Földhözkötöttség”: Jelenleg csak egyetlen kifejezett életformát ismerünk, és ez a jelenleg elfogadott tudományos álláspont szerint spontán kialakult, szén alapra épülő földi. Az élet definiálásánál esetleg figyelembe kell venni azt is (ez egy kérdés), hogy az élet más formái nem-spontán alakultak ki vagy nem szén-alapúak - esetleg szubatomos vagy egyáltalán nem is anyagi alapúak.

Ezen tényezőket figyelembe véve, az élet definíciójára azt lehetne mondani, hogy a különlegesen szerveződött anyagcsere, az állandóság és variáció képessége, sőt, ezek szervezett kölcsönös kapcsolata, a homeosztázis tűnik esszenciálisnak, ezen túl az információtartalom és a szaporodás szemiesszenciális tényezők.

[szerkesztés] Biológia-orientált definíció

  1. Az élőlények sajátos biológiai molekuláris komponensekből állnak, úgymint szénhidrátok, lipidek, nukleinsavak és fehérjék.
  2. Mind energiára, mind kémiai anyagra, mind információra szükségük van az élet fenntartásához. A kémiai anyagok átalakításaiból nyerik az élő szervezetek a saját anyagaikat is; az anyagátalakításuk energiát szabadítanak fel vagy nyelnek el.
  3. Legalább egy sejtből kell, hogy álljanak, mert csak a legalább ilyen komplexitású rendszer képes homeosztázisra és ingerlékenységre az életműködések fenntartása mellett.
  4. Homeosztázissal rendelkeznek, vagyis a rájuk ható környezeti tényezők változtató hatásai ellenében megőrzik az önazonosságukat (ha azok nem haladnak meg egy kritikus értéket).


[szerkesztés] Kémiai megfontolások

A földi élet szén alapú. Szerves vegyületeink szén alapvázat tartalmaznak. Azonban nem zárható ki a más kémiai elemet felhasználó életforma léte az univerzumban, viszont a szén univerzális jellegét hangsúlyozó elméletet carbon chauvinism-ként („szén-sovinizmus”) említik. A szénhez való kémiai hasonlóság miatt a szilícium alapú élethez fűznek nagy reményeket.

[szerkesztés] Egyéb meghatározások

Néhány elmélet olyan rendszernek tekinti az élőlényt, mely önszervező: a saját anyagainak átalakításai úgy vannak szervezve az anyagcsere reakcióhálózatában, hogy képes legyen a felvett tápanyagokból állandóan gyártani a saját felépítő vegyületeit, és azoknak a segítségével tartja fenn a homeosztázisát. Az élő rendszer továbbá potenciálisan képes magához szervezettségben hasonló homeosztatikus lényt létrehozni, azaz potenciálisan képes önmagát reprodukálni (de ez nem abszolút kritériuma az életnek). Bár az élő szervezetek is disszipatív (hőenergia-szétszóró) rendszerek, azonban nem tévesztendők össze a csak disszipatív rendszerekkel, l. tűz.
A következő variációk jelentek meg:

  • Francisco Varela és Humberto Maturana meghatározása szerint (melyet Lynn Margulis is használt) az élőlény egy önálló, önreprodukáló, vízalapú, lipid-fehérje burokkal rendelkező, szén anyagcserés, nukleinsavval replikáló fehérje kiolvasó rendszer, amely minden felvett tápanyagból saját magát építi (autopoietikus).
  • A belső negatív visszacsatolásokat egy magasabbrendű pozitívvá átalakító rendszer tekinthető élőlénynek. (J. theor Biol. 2001)
  • Tom Kinch: Az élet egy magasan organizált rendszer, mely replikátorok populációjából áll, melyek képesek mutálódni; ezen replikátorok körül egy-egy homeosztatikus rendszer épült, aktívan segítve a szaporodást, vagy éppen megvédve a replikátorokat. Ez a meghatározás az élet és az evolúció egységeit összekeveri.
  • Stuart Kauffman: Az élet olyan önálló ágens, vagy multi-ágens rendszer, mely képes továbbszaporítani magát és legalább egy termodinamikus munkakört véghezvinni.
  • Robert Pirsig: Az élet egy olyan rendszer, mely próbálja maximalizálni jövőbeli lehetőségeit, azaz olyan döntéseket hozni, melyek a jövőbeli lehetőségeinek tárházát a lehető legszélesebbre változtatják.
  • Az élet egy rendszer, mely az energia áramlásával az entrópiát negentrópiává változtatja. Ez a megfogalmazás önmagában kevés, mert számos élettelen nyílt rendszer is képes erre. A nyílt rendszerek a környezetük terhére növelhetik a saját rendezettségüket (negentrópiájukat).

A fogalmi meghatározás bonyodalmai úgy kerülhetők meg, hogy a természet jelenségei közül az életet körülhatárolni tudjuk az életkritériumok segítségével: azok a rendszerek mutatnak életet (vagyis azok az élő, biológiai rendszerek), amelyek ezeknek a kritériumoknak megfelelnek.

[szerkesztés] Az élet megközelítése

Az élő szervezetek - mint nyílt, disszipatív kémiai rendszerek - létezése azt igényli, hogy a szervezetekben az alapvető biológiai molekulák és kölcsönhatási rendszerük valamilyen módon újra és újra létrejöjjenek. Ez a bennük levő biológiai molekulák állandó lebomlása következtében csak úgy lehetséges, hogy a szervezet anyagcsere-folyamatai a felvett tápanyagokból állandóan ugyanazokat az anyagokat termeljék, ugyanazokat a makromolekulákat szintetizálják, a közöttük levő molekuláris és biokémiai viszonyokat is állandóan újratermelve. Ez meg csak úgy lehetséges, hogy az anyagcsere során a tápanyagokból kiinduló anyagátalakítások meghatározott kényszerpályákon, a biokémiai reakcióutakon történnek, és az ezeken keresztül folyó anyagátalakulások eredményeképpen mindig a szervezet saját biológiai (makro)molekulái jönnek létre a szervezetre jellemző minőségben, arányokban és időben. A meghatározott biokémiai kényszerpályák kémiai körfolyamatok (reakcióciklusok) és ezeknek reakcióhálózatokkal való összekapcsolódásai. A kényszer azt jelenti, hogy egy-egy vegyület sok lehetséges átalakulása közül csak az önépítéshez (autopoiézishez) ténylegesen szükséges reakciók vannak sokszázezerszeresére felgyorsítva (vagyis a biokémiai anyagcsere-reakciók katalizáltak); a többi lehetséges átalakulás (amelyek az anyagok átalakítását az önépítés szempontjából fölösleges pályákra vinnék) nincsen katalizálva, ezért azok lényegileg nem is következnek be az élő szervezetekben. Az élő szervezetekben előforduló anyagátalakítási kényszerreakciókat az határozza meg tehát, hogy melyeknek vannak biológiai katalizátoraik. A mai élővilágban a biológiai katalizátorok elsősorban a fehérjék, azoknak a katalízist elvégezni képes változatai, az enzimek. Valamikor még nukleinsavak is betölthették ezt a funkciót, de ma már alig vannak nukleinsav természetű katalizátorok. Az enzimek előállítására vonatkozó genetikai információt pedig az örökítő anyag génjei hordozzák. A mai élővilágban az örökítő anyag a dezoxiribonukleinsav (DNS); de több milliárd évvel ezelőtt még ezt a funkciót is elláthatták bizonyos ribonukleinsavak. Az örökítő anyag a biokatalizátorok segítségével az anyagcsere reakcióiban képes önmagáról másolatot készíttetni (vagyis képes replikálódni), de úgy, hogy a többi biokémiai reakció őt magát alig befolyásolják, illetve a saját szerkezeténél fogva a biokatalizátorok képesek az esetleges hibáit nagy részben kijavítani.

Az élő szervezetek anyagcsere-reakcióinak körkörös és hálózatos szerveződése, a biokémiai reakciók katalizált volta és az örökítő anyag állandó jelenléte biztosítja azt, hogy az élő szervezetek a környezetük hatásaira (ingereire) reagálnak ugyan (ingerületi állapotokat mutatnak, azaz ingerlékenyek, de ezen közben azért képesek az önazonosságukat - bizonyos határok között - mégis megőrizni, azaz homeosztázist mutatnak. Az ingerület állapotában az egyes reakciók sebességei és az anyagátalakítások sorozatainak irányai kissé változhatnak, és ezért a környezeti tényezők mérsékelt hatásait az élő szervezetek eltűrik (tolerancia), miközben megőrzik önmagukat. Változni csak olyan mértékben és minőségben változhatnak, amit a homeosztatikus képesség még megenged; ha a homeosztázis nem tartható fenn, akkor megszűnik az élet, mert a biológiai rendszer felbomlik.

Homeosztatikus anyagcsere csak akkor lehetséges, ha

  1. benne reakcióciklusok vannak, amelyek állandóan ugyanazokat a vegyületeket állítják elő;
  2. az örökítő anyag megfelelő mennyiségben és megbízható másolatban rendelkezésre áll, idegen örökítő anyagokkal való kölcsönhatása kizárt vagy utólagosan kiiktatható;
  3. a rendszert és alrendszereit határoló struktúrák lehetővé teszik az anyagok felvételét és leadását, de mégis elhatárolják a bennük zajló anyagcsereutakat a kívül zajló történésektől;
  4. a fontos biológiai molekulák a megfelelő helyen és a megfelelő időben állnak rendelkezésre, mert külső és/vagy belső vázakhoz vannak kapcsolva, illetve azok segítségével szállítódnak.

Ezek a feltételek együttesen eléggé bonyolult anyagcsere-alrendszerek komplikált együttműködésének megszerveződését teszik szükségessé.

[szerkesztés] Az élő rendszer biokémiai alrendszerei

Különböző sejtosztódási folyamatok
Nagyít
Különböző sejtosztódási folyamatok

Egy élő (biológiai) rendszer még a legegyszerűbb megjelenési formájában is legalább négy biokémiai alrendszer szerveződött összekapcsolódásából jön létre:

  1. Az anyagcsere kémiai reakcióciklusai egymáshoz kapcsolódva adják azt a "kémiai motor"-t, ami lehetővé teszi a biokémiai reakcióhálózat bővített újratermelődését (növekedését autokatalitikus ciklusokkal; J.B.S. Haldane, 1932; Gánti Tibor, 1971). Ez a biokémiai motor egy disszipatív rendszer, amely nem tudja a tevékenységét megőrizni folyamatos energiafelhasználás nélkül (ugyanis működésének entrópianövekedése hőenergia formájában leadódik a külvilágba). A motor reakció-körfolyamatai teszik lehetővé, hogy a külső körülmények tolerancia határain belüli megváltozásai ellenére a rendszer megőrizheti önazonosságát. Ugyanis az összes alrendszer fő molekuláinak építőköveit: a foszfolipideket, az aminosavakat, a nukleotidokat ez a rendszer állítja elő a tápanyagok átalakításai során.
  2. A rendszernek rendelkeznie kell egy konzervatív struktúrájú (az anyagcsere reakcióiban részt alig vagy nem vevő) információhordozó alrendszerrel, amit örökítő anyagnak mondhatunk. Ez egy vagy több olyan speciális makromolekula, ami a nagyságánál fogva elegendő mennyiségű és tartós információt hordoz a rendszer egészének működése számára: ez határozza meg a biokatalizátorok termelődését. Az a konzervatív molekula (a mostani élővilágban a DNS) az anyagcsere reakcióinak segítségével a saját mintájára saját magáról másolatokat készíttet, és így igen nagy mértékben változatlanul bekerülhet az utód sejtekbe is.
  3. A biológiai rendszert közvetlenül a külvilágától elhatároló és egyben azzal össze is kötő határoló struktúra alrendszere. Ez olyan molekulákból áll, amelyeket szintén az anyagcsere biokémai reakciói hoznak létre, önmaguktól spontán összeállva körülveszik a biológiai egységet és ezzel azt a térben lehatárolják, de egyben lehetővé is teszik a tápanyagok és anyagcsere-köztitermékek (metabolitok) felvételét és a hulladékanyagok meg egyes metabolitok leadását. Az élő sejtek esetében ezek a sejtet borító és a sejtek belsejében is megtalálható sejtmembránok, míg a soksejtű lények egésze esetében a bőrszövetrendszer, illetve a köztakaró.
  4. A negyedik alapvető alrendszer a térbeli vonatkoztatásokat jelentő külső és/vagy belső vázak és szállítók rendszere: a sejtet borító plazmamembránon kívüli tokok vagy sejtfalak bizonyos fixációs pontjai (a prokarióták esetében), vagy a sejteken belüli sejtváz fehérjerendszere (az eukarióták esetében). Az enzimek és más fehérjék jelentős része, az örökítő anyag (DNS) molekulái, az RNS molekulák jó része is a membránok, a tokok vagy a sejtváz komponenseihez kötődnek; ezért ezeknek az utódsejtekbe elosztódása azt is biztosítja, hogy e fontos biológiai molekulákkal az utód szervezetek is rendelkezni fognak.

E (legalább) négy alrendszer bonyolult együttműködése egy olyan komplex kényszerfeltétel-együttest igényel, ami nélkül nem jöhet létre az élet. E kényszerfeltételek számunkra is megnyilvánuló megvalósulása a struktúra. Az élők bonyolult kényszerfeltétel-rendszeri igénye magyarázza, hogy az a minimális struktúra, ami képes egyáltalán kivitelezni az élethez szükséges folyamatokat, a legprimitívebb prokarióta sejt. Úgy tűnik, hogy az élethez minimálisan szükséges gének száma 300 és 500 között lehet, ahogy a legegyszerűbb prokarióták működése alapján becsülik. Ezért nem lehet élőnek tekinteni a nem-sejtes felépítésű rendszereket, még ha azok bonyolult működéseket képesek is kivitelezni. Ezért is nem élők pl. a vírusok, mert nincs sejtes struktúrájuk és nincs önálló anyagcseréjük sem.
A több biokémiai alrendszerből való felépítettséget már régebben is felismerték. Csak fenomenológiai és kolloidkémiai modell volt az Alexander Oparin által kimunkált koacervátum modell, amely még nem tárgyalta a kémiai reakció-alrendszerek speciális kölcsönhatásait. Ezt követően a nukleinsavak és a fehérjék gyarapodásának kölcsönös egymásra utaltságát állították a középpontba (pl. Manfred Eigen hiperciklus modellje). Gánti Tibor biokémikus ismerte fel az anyagcsere biokémiai "motor"-jának kulcsfontosságú szerepét, majd hozzákapcsolta a fehérjék és a nukleinsavak polimerizációs reakcióit, azután a membránokat alkotó építőkövek létrehozását és működését is; így már 1971-től folyamatosan fejlesztette a kemoton modelljét. A külső és/vagy belső váz és szállító alrendszerek hozzászerveződését és integrációját eddig még nem sikerült kielégítő módon megoldani.

[szerkesztés] Önszerveződés és autonómia

Az élők a saját anyagaikat és az azok közti viszonyokat térben és időben állandóan és folyamatosan újraelőállítják. Ezért az életet hordozó anyagi rendszerek tulajdonképpen nem is egyszerűen léteznek, hanem történnek (vagyis a puszta létezésüknek jellegzetes története van, ahogy ezt Ludwig von Bertalanffy kifejezte. ). Az anyagcseréjükben az információhordozó és az aktivitást kifejtő rendszerek között nemcsak szoros kapcsolat, hanem sajátos cirkuláris (körkörös) meghatározottság van: Az örökítő anyag szükséges a biokatalizátorok létrehozásához, de a biokatalizátorok meg szükségesek az örökítő anyag esetleg képződő hibáinak kijavításához és az örökítő anyagnak a lemásolásához is. Mind a biológiai katalizátorok termeléséhez, mind az örökítő anyag lemásolásához a szükséges építőköveket az anyagcsere-"motor" reakcióútjai állítják elő a felvett tápanyagokból; de hogy a felvett tápanyagok átalakításai milyen építőköveket mikor és milyen mennyiségben hoznak létre, az meg a biokatalizátoroktól függ. Az anyagcsere reakcióútjai és a biokatalizátor enzimek működése, illetve az örökítő anyag anyagcserében való kifejeződése (a biokatalizátorok szintézise) és az enzimek működései között számos irányítási-szabályozási kölcsönhatás létezik; ezek teszik lehetővé az anyagcsere és általában az életműködések önszerveződő jellegét, hozzák létre az élő szervezetek autonómiáját.

[szerkesztés] Öröklődés és változékonyság

A legalább négyféle és egyenként is bonyolult biokémiai alrendszer egyike sem mentes teljesen az információs zajtól; ezért bennük az eredeti alkotórészeknek változatai is megjelenhetnek, ha azok lehetővé teszik a homeosztázist. Ez a magyarázata az élő (biológiai) rendszerek változatosságának (variációinak) és változékonyságának (variabilitásának). Ha a sokféleség (diverzitás) az örökítő (genetikai) anyagban jön létre és még az utód rendszerbe is átkerül, akkor a változatosság (változékonyság) öröklődő lesz. A hirtelen fellépő új és öröklődő változat a mutáció. Ha azonban a metabolikus motor, az enzimek vagy a határoló struktúrák molekuláiban és/vagy kölcsönhatásaiban keletkezik olyan változás, amit a homeosztatikus állapot fenntartása megenged, akkor ez az új változat vagy módosulat a nem öröklődő modifikáció. A mutációk következtében az utódok - bár szerveződésükben lényegileg hasonlítanak az elődökhöz, de mégis - variációk egy témára, vagyis valamilyen mértékben különböznek egymástól. A variánsok életműködései szintén egymás változatai: az egyik az adott körülmények között jobb, a másik kevésbé. Emiatt azután a genetikai variánsoknak eltérő esélyük lesz életben maradni és majdan szaporodni; vagyis a különböző genetikai változatokra különféle szelekciók fognak hatni. Emiatt a változatok közötti válogatások irányítani fogják a következő nemzedékek genetikai összetételét; ez a biológiai evolúció genetikai alapja.

[szerkesztés] Reprodukció

Egy új élet kezdetén...
Nagyít
Egy új élet kezdetén...

Az élő szervezetek potenciálisan szaporodni is képesek, azaz saját magukhoz többé-kevésbé hasonló (lényegileg azonos szerveződésű) és ugyancsak szaporodóképes utódo(ka)t létrehozni. Ahhoz, hogy ez lehetséges legyen, a következőknek kell teljesülnie:

  1. Az utódnak kapnia kell egy másolatot az örökítő anyagból (hiszen ez határozza meg a kifejlődésének és működésének programját).
  2. Az utódnak kapnia kell egy teljes kémiai "motor"-t is, aminek segítségével elkezdi a saját anyagcseréjét. Enélkül az örökítő anyag információja haszontalan, mert az csakis az anyagcserében hasznosul (a biokatalizátorok felépítésére vonatkozik). Az anyagcsere kémiai reakcióhálózata a sejt formájában adható át az utódnak. Ezért nem lehetséges teljes sejt nélkül szaporodás.
  3. Az utód tehát sejtből és a benne levő örökítőanyag-másolatból kezdi az önálló életét. Ez viszont sejtosztódást igényel. Az előd szervezet maga mint sejt vagy a szaporító szerveiben képződő sejtek osztódásával szaporítósejte(ke)t (csírasejte/ke/t) hoz létre sejtosztódással, és e szaporítósejtek jelentik az utód első kiindulási sejtjét.
  4. A sejtosztódásnak kell biztosítania, hogy az utód első sejtjébe, a szaporítósejtbe bejusson a teljes örökítő anyag és az anyagcsere alrendszereinek összes releváns képviselője is, és ezek térbelileg el is tudjanak válni az előd hasonló alrendszereitől. Az anyagok pontos elosztódását és térbeli elkülönülését biztosítják a külső vagy belső vázstruktúrák (membránok, tokok, sejtfalak, sejtváz), amelyekhez kötődve és amelyek segítségével szállítódva az alrendszerek komponensei az utód kiindulási sejtjébe kerülnek.

Amennyiben az élő szervezetek a fentebb leírt módon reprodukálják magukat, azaz szaporodnak, akkor ez magyarázza, hogy az utódok nagyon hasonlítani fognak az előd(ök)re. e az információs zajok következtében az örökítő anyag mégsem tökéletes másolatban jut az utódokba, mert egy része folyton változik a hibák javítása ellenére; az utód tehát a DNS mutációit tartalmazó örökítő anyagot fog örökölni. Emiatt az utódok mégsem lesznek tökéletes másolatai az elődöknek, hanem különböző - kisebb-nagyobb mértékben eltérő, de még a homeosztázisok keretein belül levő - változatai (variánsai) azoknak. Az élő szervezetek - ha szaporodnak - utódaikban öröklődő változékonyságot (mutabilitást) is mutatnak, ami magyarázza az élővilág változatosságát és sokféleségét. Ez a változatosság azonban már az egyedek fölötti szerveződések (populációk, társulások és az egész élővilág) számára fontos, mert ez a változatosság lesz az alapja a különféle szelekciós folyamatoknak. Az egyes populációkban a genetikai változatosságot továbbá igen jelentős módon lehet fokozni az egyedek örökítő anyagának kombinációjával, ami az ivaros reprodukcióban valósul meg. Ebben az esetben két szülő örökítő anyagának kombinálódása hozza létre az utód genetikai anyagát, ami a szülői szervezetek párba állásának kombinációjával igen tekintélyes mértékben fokozza az utódok örökletes változatosságát.
Ha viszont adottak az öröklődő különféle változatok és ezek maguk is valamilyen mértékben reprodukálódnak, akkor a változatok között kölönböző szelekciók válogatni fognak: nem minden változatnak egyforma az esélye az életben maradásra, illetve a reprodukcióra. Ez az egyik folyamat, ami miatt nemzedékről nemzedékre a szervezetek változatainak összetétele változni fog. Ez a biológiai evolúció alapja.

[szerkesztés] Felmerülő kérdések

Hogyan kezdődött az élet? Az élet egy kozmikus jelenség? Az élethez szükséges feltételek vékony vagy széles határok között mozognak? Miért fejlesztették ki a biológiai rendszerek az ivaros szaporodást? Mi vezérli a sejtek, szervezetek méretét?

Az élet eredetének kutatásával kerülhetünk közelebb a válaszokhoz.

[szerkesztés] Irodalmi hivatkozások

  • F.H.C. Crick (1982): Life Itself - Its origin and nature. Futura Publications. (Magyar kiadás: Az élet mikéntje. Budapest: Gondolat. 1987.)
  • M. Eigen és P. Schuster (1979): The hypercycle. A principle of natural self-organization. Berlin: Springer Verlag.
  • Gánti Tibor: Az élet princípiuma. Gondolat (1971, 1978); Kriterion (1979); OMIKK (1983).
  • Gánti Tibor: Chemical systems and supersystems I. Chemical cycles. Acta Chimica Acad. Sci. Hung. 91, 357. (1976); II. Stoichiometry of self-reproducing chemical systems. Acta Chimica Acad. Sci. Hung. 91. (1976); III. Models of self-reproducing chemical supersystems: The chemotons. Acta Chimica Acad. Sci. Hung. 98, 265. (1978).
  • Gánti Tibor: Chemoton elmélet. I. A fluid automaták elméleti alapjai. OMIKK (1984); II. Az élő rendszerek elmélete. OMIKK (1989).
  • Gánti Tibor (1989): Kontra Crick avagy az élet mivolta. Budapest: Gondolat.
  • E. Schrödinger (1944): What is Life? McMillan. (Magyar kiadás: Válogatott tanulmányok. Ford.: Nagy Imre. Gondolat. 1970, 1985).
  • E. Kahane (1962): La Vie n'existe pas! Les Editions de l'Union Rationaliste, Paris, 1962. (Magyar kiadás: Az Élet nem létezik! Ford.: Józsa Péter. Kossuth. 1965)

[szerkesztés] Hivatkozások

[szerkesztés] Külső hivatkozások

A magyar Wikidézetben további idézetek találhatóak
Élet témában.
Commons
A Wikimedia Commons tartalmaz Élet témájú médiaállományokat.

Darwin tévedett? (Index.hu, 2006. február 14.)

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com