Ebooks, Audobooks and Classical Music from Liber Liber
a b c d e f g h i j k l m n o p q r s t u v w x y z





Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Goniometrická funkce - Wikipedie, otevřená encyklopedie

Goniometrická funkce

Z Wikipedie, otevřené encyklopedie

Jako goniometrické funkce se v matematice nazývá skupina šesti funkcí velikosti úhlu používaných například při zkoumání trojúhelníků a periodických jevů. Goniometrické funkce jsou základem goniometrie. Obvykle se definují jako poměr dvou stran pravoúhlého trojúhelníka nebo délky určitých částí úseček v jednotkové kružnici. Jejich modernější definice je založena na nekonečných řadách nebo řešeních určitých diferenciálních rovnic, díky čemuž je lze vztáhnout také ke komplexním číslům. Inverzní funkce k funkcím goniometrickým se označují jako funkce cyklometrické.

Goniometrické funkce tedy jsou:

  • sinus (sin)
  • kosinus (cos)
  • tangens (tg = sin/cos), též se značí tan
  • kotangens (cotg = cos/sin), též se značí cot nebo cotan
  • sekans (sec = 1/cos)
  • kosekans (cosec = 1/sin)

Historicky se používaly ještě následující dvě funkce:

  • versin = 1 − cos
  • exsec = sec − 1

Nejdůležitějšími funkcemi jsou však sinus, kosinus a tangens.

Obsah

[editovat] Definice

[editovat] Pravoúhlý trojúhelník

Pravoúhlý trojúhelník s pravým úhlem γ při vrcholu C. Přilehlá a protilehlá odvěsna se vztahují k úhlu α.
Zvětšit
Pravoúhlý trojúhelník s pravým úhlem γ při vrcholu C. Přilehlá a protilehlá odvěsna se vztahují k úhlu α.

Při definici s pomocí pravoúhlého trojúhelníka jsou jednotlivé prvky trojúhelníka ABC následující:

  • pravý úhel γ je při vrcholu C
  • určovaným úhlem je úhel α, vzhledem k němu je
    • strana a označována protilehlá odvěsna
    • strana b označována přilehlá odvěsna
  • nejdelší strana c je nazývána přepona trojúhelníka

Předpokládá se, že trojúhelník leží v euklidovském prostoru a součet jeho vnitřních úhlů je tak π radiánů neboli 180 °. Pak:

  • Sinus α je poměr délky odvěsny protilehlé tomuto úhlu a délky přepony.
\sin \alpha = \frac {a} {c}
  • Kosinus α je poměr délky odvěsny přilehlé tomuto úhlu a délky přepony.
\cos \alpha = \frac {b} {c}
  • Tangens α je poměr délek odvěsny protilehlé tomuto úhlu a délky odvěsny k němu přilehlé.
\textrm{tg}\, \alpha = \frac {a} {b} = \frac {\sin \alpha} {\cos \alpha}
  • Kotangens α je poměr délek odvěsny přilehlé tomuto úhlu a délky odvěsny k němu protilehlé.
\textrm{cotg}\, \alpha = \frac {b} {a} = \frac {\cos \alpha} {\sin \alpha}
  • Sekans α je poměr délky přepony a délky odvěsny přilehlé tomuto úhlu.
\sec \alpha = \frac {c} {b} = \frac {1} {\cos \alpha}
  • Kosekans α je poměr délky přepony a délky odvěsny protilehlé tomuto úhlu.
\textrm{cosec}\, \alpha = \frac {c} {a} = \frac {1} {\sin \alpha}

[editovat] Jednotková kružnice

Těchto šest funkcí může být také definováno pomocí jednotkové kružnice, což je kružnice o poloměru jedna se středem v počátku soustavy souřadnic. Tento způsob definice nemá valné praktické využití, koneckonců pro většinu úhlů jde o postup založený na pravoúhlých trojúhelnících. Na druhou stranu jde o postup velmi názorný a umožňující definovat úhly v rozsahu 0 – 2 π a nikoli jen 0 – π /2 radiánů, jako při předchozím postupu. Rovnice jednotkové kružnice je:

x^2 + y^2 = 1 \,

Na jednotkovou kružnici jsou vynášeny orientované úhly θ tak, že jejich vrchol je ve středu kružnice a počáteční rameno je totožné s kladnou (pravou) poloosou vodorovné osy souřadnic. Jsou-li velikosti těchto úhlů kladné (větší než nula) je úhel orientovaný proti směru otáčení hodinových ručiček. Jsou-li záporné je úhel orientován ve směru otáčení. Druhé rameno úhlu protíná jednotkovou kružnici v bodě, jehož souřadnice v& dané soustavě jsou [x,y]. Úsečka daná počátkem souřadné soustavy a tímto bodem je přeponou trojúhelníka, jehož odvěsny mají délku x a y. Protože má tato přepona délku 1, tak platí: x = cosθ a y = sinθ. Pro úhly větší než 2π, nebo menší než −2π, se celkem jedoduše pokračuje v otáčení ramena úhlu kolem středu kružnice. Pak se ovšem hodnoty funkcí sinus a kosinus začnou opakovat – říkáme, že tyto funkce jsou periodické s periodou 2π (360°) a platí:

\sin\theta = \sin\left(\theta + 2\pi k \right)
\cos\theta = \cos\left(\theta + 2\pi k \right)

kde θ je libovolný úhel a k libovolné celé číslo.

Nejmenší periodou funkcí sin, cos, sec a cosec je plný úhel – tedy 2π radiánů nebo 360 stupňů. Nejmenší periodou funkcí tg a cotg je úhel přímý – π nebo 180°.

Možná konstrukce hodnot jednotlivých goniometrických funkcí.
Zvětšit
Možná konstrukce hodnot jednotlivých goniometrických funkcí.

Zatímco funkce sinus a kosinus lze sestrojit takto jednoduchým způsobem, konstrukce hodnot ostatních funkcí je o něco složitější. Běžně se používá ještě konstrukce funkcí tangens a kotangens, i když se v českých učebnicích matematiky používá postup trochu jiný, než je ten na sousedním obrázku.

[editovat] Řady

Aproximace funkce sinus (modře) pomocí Taylorova polynomu sedmého stupně (růžově).
Zvětšit
Aproximace funkce sinus (modře) pomocí Taylorova polynomu sedmého stupně (růžově).

Za pomocí geometrie a vlastností limit lze ukázat, že derivace sinu je kosinus a derivace kosinu je −sinus. Potom lze pomocí Taylorových řad vyjádřit sinus a kosinus pro všechna komplexní čísla x takto:

\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots = \sum_{n=0}^\infty \frac{(-1)^nx^{2n+1}}{(2n+1)!}
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots = \sum_{n=0}^\infty \frac{(-1)^nx^{2n}}{(2n)!}

Polynomy pro další goniometrické funkce jsou:

\textrm{tg}\,x = x + \frac{x^3}{3} + \frac{2 x^5}{15} + \frac{17 x^7}{315} + \ldots, kde \left(-\frac{\pi}{2}< x < \frac{\pi}{2}\right)
\textrm{cotg}\,x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \ldots, kde \left(0< |x| < \pi\right)
\sec x = 1 + \frac {x^2} {2} + \frac {5 x^4} {24} + \frac {61 x^6} {720} + \ldots
\csc x = \frac {1} {x} + \frac {x} {6} + \frac {7 x^3} {360} + \frac {31 x^5} {15120} + \ldots

[editovat] Diferenciální rovnice

Jak funkce sinus, tak i kosinus jsou výsledkem diferenciální rovnice y\,''=-y. To tedy znamená, že pro obě tyto funkce platí, že jejich druhá derivace je rovná minus dané funkci. Ve dvourozměrném vektorovém prostoru V obsahujícím všechna řešení této rovnice je sinus právě to řešení splňující počáteční podmínky y(0) = 0 a y′(0) = 1 a kosinus řešení s počátečními podmínkami y(0) = 1 a y′(0) = 0. Protože jsou sinus a kosinus lineárně nezávislé tvoří bázi vektorového prostoru V. Tento způsob definice těchto goniometrických funkcí je v zásadě ekvivalentní definici přes Eulerovu formuli.

Funkce tangens je řešením rovnice y\,'= 1+y^2 pro počáteční podmínku y(0) = 0.

[editovat] Pomocí vlastností

Existuje právě jedna dvojice funkcí s a c s těmito vlastnostmi: \forall x, y \in\mathbb{R}:

s(x)^2 + c(x)^2 = 1,\,
s(x+y) = s(x)c(y) + c(x)s(y),\,
c(x+y) = c(x)c(y) - s(x)s(y),\,
0 < xc(x) < s(x) < x\,\!, pro 0 < x < 1\,\!.

[editovat] Výpočty hodnot

V dnešní době se většina osob vyhne počítání hodnot goniometrických funkcí díky dostupností počítačů a vědeckých kalkulátorů, které obsahují vestavěné goniometrické funkce pro prakticky libovolný úhel. Historicky se hodnoty goniometrických funkcí určovaly interpolací hodnot z předpočítaných tabulek obsahujících jejich hodnoty pro nejdůležitější úhly. Tyto tabulky vznikaly se zrodem samotných goniometrických funkcí a byly sestavovány opakovaným užitím sčítání a půlení znamých úhlů.

Moderní počítače užívají k výpočtu těchto hodnot několika metod. Obvyklým postupem je kombinace polynomiální aproximace (pomocí Taylorových nebo Maclaurinových polynomů) a vyhledávání v tabulce již připravených úhlů. Nejprve je tedy nalezena hodnota blízkého úhlu a přesná hodnota je dopočítána vhodným aproximačním polynomem. Tak ovšem mohou postupovat výkonnější stroje vybavené jednotkou pro operace s plovoucí řádovou čárkou, v jednodušších zařízeních se používá algoritmus zvaný CORDIC, který je v tomto případě efektivnější. Obě metody jsou kvůli lepšímu výkonu často součástí počítačového hardware.

Základní úhly mohou být ručně vypočítány pomocí Pythagorovy věty. Takto lze přesně určit hodnoty funkcí sinus, kosinus a tangens pro všechny úhly, které jsou násobkem 60°. A to následujícím způsobem:

Mějme pravoúhlý trojúhelník, jehož zbývající úhly jsou stejné a tedy rovné \frac{\pi}{4} (45°), pak jsou ovšem délky obou přepon také shodné a lze položit a=b=1. Hodnoty funkcí sinus, kosinus a tangens pak lze najít pomocí vzorce:

c = \sqrt{a^2+b^2} = \sqrt2

Pak ovšem:

\sin \frac{\pi}{4} = \cos \frac{\pi}{4} =  \frac{1}{\sqrt2}
\mbox{tg} \frac{\pi}{4} = \frac{\sqrt2}{\sqrt2} = 1

Abychom určili goniometrické funkce pro úhly \frac{\pi}{3} radiánů (60°) a \frac{\pi}{6} radiánů (30°) sestrojíme rovnostranný trojúhelník se stranami délky 1. Všechny úhly tohoto trojúhelníku mají velikost \frac{\pi}{3} radiánů (60°). Když ho rozdělíme na poloviny, získáme pravoúhlý trojúhelník s úhly o velikostech \frac{\pi}{6} a \frac{\pi}{3}. Jeho kratší přepona má délku \frac{1}{2}, ta druhá má délku \frac{\sqrt3}{2} a přepona délku 1. Pak tedy:

\sin \frac{\pi}{6} = \cos \frac{\pi}{3} = \frac{1}{2}
\cos \frac{\pi}{6} = \sin \frac{\pi}{3} = \frac{\sqrt3}{2}
\mbox{tg} \frac{\pi}{6} = \mbox{cotg} \frac{\pi}{3} = \frac{1}{\sqrt3}

[editovat] Historie

Snad jako první se studiu goniometrických funkcí a počítání jejich hodnot věnoval Hipparchos z Nikaje (180-125 př. n. l.), který porovnával délky oblouku kružnice při daném středovém úhlur) s délkami jim odpovídajících tětiv (2r sin(α/2)). O něco později, ve 2. století našeho letopočtu, Ptolemaios obohatil tyto znalosti ve svém díle Almagest o odvození vzorců odpovídajících těm dnešním pro součet a rozdíl úhlů: sin(α + β) a sin(α − β). Dokázal také odvodit vzorec pro úhel poloviční (sin2(α/2) = (1 − cos(α))/2), díky čemuž mohl sestavit tabulky pro úhly s prakticky libovolnou přesností. Do dnešních dnů se však ani jedny tabulky nedochovaly.

K dalšímu pokroku v oblasti goniometrie došlo v Indii. Ve spise Siddhantas ze 45. století byla poprvé uvedena definice sinu jako poměru mezi polovinou úhlu a polovinou sečny. Tento spis také obsahuje první dodnes dochované tabulky hodnot sinu a funkce (1 − cos) pro úhly v 3,75 stupňových intervalech mezi 0 a 90 stupni. Byl později přeložen a podstatně rozšířen Araby, kteří zhruba v 10. století, v díle Abu'l-Wefy, již používali šest goniometrických funkcí a měli tabulky hodnot funkcí sinus a tangens s přesností na 8 desetinných míst pro úhly vzdálené od sebe o čtvrtinu stupně.

Dnes používané slovo sinus pochází z latinského výrazu pro záhyb nebo zátoku. Vzniklo nesprávným překladem ze sanskrtu, z tamního slova jiva (nebo jya). jiva (původně ardha-jiva), ve významu „půltětiva“, byla v díle Aryabhatiya z 6. století Araby přepsána jako jiba (جب). Evropskými překladateli (Robert of Chester a Gherardo of Cremona) z Toleda však bylo toto slovo ve 12. století zaměněno se slovem jaib (جب) znamenajícím „zátoka“. Důvodem jejich omylu byl stejný arabský zápis obou slov.

Všechny dosavadní práce se na goniometrii dívaly jako na doplněk astronomie, snad prvním pojednáním zabývajícím se goniometrií samostatně bylo Regiomontanovo De triangulis omnimodus z roku 1464 a později také jeho Tabulae directionum (kde se objevila, zatím nepojmenovaná, funkce tangens).

Rhaeticova práce Opus palatinum de triangulis konečně definovala goniometrické funkce přes pravoúhlé trojúhelníky namísto tětiv kružnic a obsahovala tabulky pro šestici goniometrických funkcí. Práci dokončil Rhaeticův student Valentin Otho v roce 1596.

Analytický náhled na goniometrické funkce vytvořil Leonhard Euler roku 1748 ve spise Introductio in analysin infinitorum, kde tyto funkce definoval pomocí nekonečných řad a kde také představil Eulerův zápis komplexních čísel: eix = cos(x) + i sin(x). Používal také (téměř) dnešní zkratky pro funkce: sin., cos., tang., cot., sec., a cosec..

[editovat] Vybrané vzorce z oblasti goniometrie

Následující vzorce jsou platné tam, kde mají dané formule smysl

  • Záporné hodnoty úhlů
\sin(-\alpha) = - \sin \alpha\,\!
\cos(-\alpha) = \cos \alpha\,\!
\mathrm{tg}(-\alpha) = - \mathrm{tg}\,\alpha\,\!
\mathrm{cotg}(-\alpha) = - \mathrm{cotg}\,\alpha\,\!
  • Vzájemné vztahy mezi goniometrickými funkcemi stejného úhlu
\sin^2 \alpha + \cos^2 \alpha = 1\,\!
\mathrm{tg}\,\alpha\cdot\mathrm{cotg}\,\alpha = 1\,\!
\textrm{tg}\, \alpha = \frac {\sin \alpha} {\cos \alpha}\,\!
\textrm{cotg}\, \alpha = \frac {\cos \alpha} {\sin \alpha}\,\!
\sec \alpha = \frac {1} {\cos \alpha}\,\!
\textrm{cosec}\, \alpha = \frac {1} {\sin \alpha}\,\!
1 + \textrm{tg}^2\, \alpha = \frac {1} {\cos^2 \alpha}\,\!
1 + \textrm{cotg}^2\, \alpha = \frac {1} {\sin^2 \alpha}
\left| \sin \alpha \right| = \sqrt{1 - \cos^2 \alpha} = \frac {\left| \textrm{tg}\, \alpha \right|}{\sqrt{1 + \textrm{tg}^2\, \alpha}} = \frac {1}{\sqrt{1 + \textrm{cotg}^2\, \alpha }} \,\!
\left| \cos \alpha \right| = \sqrt{1 - \sin^2 \alpha} = \frac {1}{\sqrt{1 + \textrm{tg}^2\, \alpha}} = \frac {\left| \textrm{cotg}\, \alpha \right|}{\sqrt{1 + \textrm{cotg}^2\, \alpha }} \,\!
\left| \textrm{tg}\, \alpha \right| = \frac{\left| \sin \alpha \right|}{\sqrt{1 - \sin^2 \alpha}} = \frac{\sqrt{1 - \cos^2 \alpha}}{\left| \cos \alpha \right|} = \frac {1}{\left| \textrm{cotg}\, \alpha \right|} \,\!
  • Goniometrické funkce součtu a rozdílu
\sin \left(\alpha \pm \beta\right)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta\,\!
\cos \left(\alpha \pm \beta\right)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta\,\!
\textrm{tg}\, \left(\alpha \pm \beta\right)=\frac{\textrm{tg}\,\alpha \pm \textrm{tg} \beta}{1 \mp \textrm{tg}\,\alpha\cdot\textrm{tg}\,\beta}\,\!
\textrm{cotg}\, \left(\alpha \pm \beta\right)=\frac{1 \mp \textrm{cotg}\,\alpha\cdot\textrm{cotg}\,\beta}{\textrm{cotg}\,\alpha \pm \textrm{cotg} \beta}\,\!
  • Součet a rozdíl goniometrických funkcí
\sin \alpha+\sin \beta=2\sin \left( \frac{\alpha+\beta}{2} \right) \cos \left( \frac{\alpha-\beta}{2} \right) \,\!
\sin \alpha-\sin \beta=2\cos \left( \frac{\alpha+\beta}{2} \right) \sin \left( \frac{\alpha-\beta}{2} \right) \,\!
\cos \alpha+\cos \beta=2\cos \left( \frac{\alpha+\beta}{2} \right) \cos \left( \frac{\alpha-\beta}{2} \right)\,\!
\cos \alpha-\cos \beta=-2\sin \left( \frac{\alpha+\beta}{2} \right)\sin \left( \frac{\alpha-\beta}{2} \right)\,\!
\mathrm{tg}\,\alpha\pm\mathrm{tg}\,\beta=\frac{\sin \left( \alpha\pm\beta\right) }{\cos \alpha\cos \beta}\,\!
\mathrm{cotg}\,\alpha\pm\mathrm{cotg}\,\beta=\frac{\sin \left( \beta\pm\alpha\right) }{\sin \alpha\sin \beta}\,\!
\mathrm{tg}\,\alpha\pm\mathrm{cotg}\,\beta=\pm\frac{\cos \left( \alpha\mp\beta\right) }{\cos \alpha\sin \beta}\,\!
  • Součiny goniometrických funkcí
\sin \alpha \sin \beta = \frac{1}{2} [\cos (\alpha - \beta) - \cos (\alpha + \beta)]
\cos \alpha \cos \beta = \frac{1}{2} [\cos (\alpha - \beta) + \cos (\alpha + \beta)]
\sin \alpha \cos \beta = \frac{1}{2} [\sin (\alpha - \beta) + \sin (\alpha + \beta)]
\mathrm{tg} \alpha \mathrm{tg} \beta = \frac{\mathrm{tg} \alpha + \mathrm{tg} \beta}{\mathrm{cotg} \alpha + \mathrm{cotg} \beta}
\mathrm{cotg} \alpha \mathrm{cotg} \beta = \frac{\mathrm{cotg} \alpha + \mathrm{cotg} \beta}{\mathrm{tg} \alpha + \mathrm{tg} \beta}
\mathrm{tg} \alpha \mathrm{cotg} \beta = \frac{\mathrm{tg} \alpha + \mathrm{cotg} \beta}{\mathrm{cotg} \alpha + \mathrm{tg} \beta}
  • Dvojnásobný úhel (K odvození goniometrických funkcí vícenásobného argumentu používáme Moivrovy věty)
\sin 2\alpha = 2\cdot \sin \alpha \cos \alpha\,\!
\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha\,\!
\mathrm{tg}\,2\alpha = \frac{2\cdot\mathrm{tg}\,\alpha}{1 - \mathrm{tg}^2\,\alpha}\,\!
\mathrm{cotg}\,2\alpha = \frac{\mathrm{cotg}^2\,\alpha - 1}{2\cdot\mathrm{cotg}\,\alpha}\,\!
  • Poloviční úhel
\left| \sin \frac{\alpha}{2} \right| = \sqrt{\frac{1 - \cos \alpha}{2}}\,\!
\left| \cos \frac{\alpha}{2} \right| = \sqrt{\frac{1 + \cos \alpha}{2}}\,\!
\left| \mathrm{tg}\,\frac{\alpha}{2} \right| = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}\,\!
\left| \mathrm{cotg}\,\frac{\alpha}{2} \right| = \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}\,\!
  • Mocniny goniometrických funkcí
\sin^2 \alpha = \frac{1}{2} (1 - \cos 2 \alpha)
\cos^2 \alpha = \frac{1}{2} (1 + \cos 2 \alpha)
\sin^3 \alpha = \frac{1}{4} ( 3 \sin \alpha - \sin 3 \alpha)
\cos^3 \alpha = \frac{1}{4} ( \cos 3 \alpha + 3 \cos \alpha)

[editovat] Hodnoty funkcí ve vybraných úhlech

Stupně Radiány Sinus Kosinus Tangens Kotangens
0 0\, 0\, 1\, 0\, -\,
30 \frac{\pi}{6} \frac{1}{2} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{3} \sqrt{3}
45 \frac{\pi}{4} \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} 1\, 1\,
60 \frac{\pi}{3} \frac{\sqrt{3}}{2} \frac{1}{2} \sqrt{3} \frac{\sqrt{3}}{3}
90 \frac{\pi}{2} 1\, 0\, -\, 0\,
120 \frac{2\pi}{3} \frac{\sqrt{3}}{2} -\frac{1}{2} -\sqrt{3} -\frac{\sqrt{3}}{3}
135 \frac{3\pi}{4} \frac{\sqrt{2}}{2} -\frac{\sqrt{2}}{2} -1\, -1\,
150 \frac{5\pi}{6} \frac{1}{2} \frac{-\sqrt{3}}{2} \frac{-\sqrt{3}}{3} -\sqrt{3}
180 \pi\, 0\, -1\, 0\, -\,
210 \frac{7\pi}{6} -\frac{1}{2} -\frac{\sqrt{3}}{2} \frac{\sqrt{3}}{3} \sqrt{3}
225 \frac{5\pi}{4} -\frac{\sqrt{2}}{2} -\frac{\sqrt{2}}{2} 1\, 1\,
240 \frac{4\pi}{3} -\frac{\sqrt{3}}{2} -\frac{1}{2} \sqrt{3} \frac{\sqrt{3}}{3}
270 \frac{3\pi}{2} -1\, 0\, -\, 0\,
300 \frac{5\pi}{3} -\frac{\sqrt{3}}{2} \frac{1}{2} -\sqrt{3} -\frac{\sqrt{3}}{3}
315 \frac{7\pi}{4} -\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} -1\, -1\,
330 \frac{11\pi}{6} -\frac{1}{2} \frac{\sqrt{3}}{2} \frac{-\sqrt{3}}{3} -\sqrt{3}

[editovat] Trigonometrické věty

[editovat] Podívejte se také na

[editovat] Reference

[editovat] Literatura

  • Rektorys, K. a spol.: Přehled užité matematiky I.. Prometheus, Praha, 2003, 7. vydání. ISBN 80-7196-179-5

[editovat] Externí odkazy

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com