أعداد حقيقية
من ويكيبيديا، الموسوعة الحرة
في الرياضياتملف:Example.ogg تعرف مجموعة الأعداد الحقيقية بأها : هي مجموعة الأعداد التي تتكون ANE GUTTEL ANEKELA KUSSUM
من مجموعة الأعداد النسبية (Q)ومجموعة الأعداد الصحيحة (Z)و مجموعة الأعداد الطبيعية(N). وبذلك تكون:
مجموعة الأعداد الطبيعية مجموعة جزئية من مجموعة الأعداد الصحيحة والأخيرة مجموعة جزئية من مجموعة الأعداد النسبية والأخيرة مجموعة جزئية من مجموعة الأعداد الحقيقية. حيث أن مجموعة الأعداد الطبيعية تبدأ من الواحد الصحيح الى موجب ما لا نهاية , أما مجموعة الأعداد الصحيحة تشتمل على الأعداد من سالب ما لا نهاية بالاضافة الى الصفر بالاضافة الى الأعداد الموجبة و التي تحتويها مجموعة الأعداد الطبيعية, أما الأعداد النسبية فتتكون من أعداد صحيحة في صورة بسط و مقام , أما الأعداد الحقيقية فتشمل المجموعات السابقة كلها بالاضافة الى الأعداد التي تحتوي على كسور مثل ال π أو ما يطلق عليه الباي أو الأعداد الجذرية. ويمكن تصور الأعداد الحقيقية بأنها أعداد غير متناهية على خط مستقيم.و تأخذ الأعداد الحقيقية اسمها من تضادها مع فكرة الأعداد التخيلية . كما يمكن لها أن تقوم بقياس الكميات المستمرة على اختلافها . يمكن التعبير عنها بالكسور العشرية التي تكون عادة سلسلة من الأرقام غير منتهية و غير دورية في حالة الأرقام غير الكسرية أو دورية في حالة الأعداد الكسرية .اذا نشأت فكرة الأعداد الحقيقية بسبب وجود أطوال لا يمكن التعبير عن قياسها باستعمال أعداد صحيحة طبيعية أو كسرية أو أعداد جذرية , لهذا يتم إنشاء مجموعة الأعداد الحقيقية و في هذه المجموعة المعادلة الآتية: x2 + a = 0 لها حل في هذه المجموعة: