Ebooks, Audobooks and Classical Music from Liber Liber
a b c d e f g h i j k l m n o p q r s t u v w x y z





Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Wiązanie wodorowe - Wikipedia, wolna encyklopedia

Wiązanie wodorowe

Z Wikipedii

Wiązanie wodorowe
Powiększ
Wiązanie wodorowe

Wiązanie wodorowe - rodzaj stosunkowo słabego wiązania chemicznego polegającego na przyciąganiu elektrostatycznym między atomem wodoru i atomem nukleofilowym zawierającym wolne pary elektronowe.

Jest to możliwe wtedy, gdy wodór jest połączony wiązaniem kowalencyjnym z innym atomem o dużej elektroujemności (np. tlenem) i w ten sposób uzyskuje nadmiar ładunku dodatniego. W wyniku tego oddziaływania pierwotne, kowalencyjne wiązanie wodór - inny atom ulega częściowemu osłabieniu, powstaje zaś nowe, bardzo słabe wiązanie między wodorem i innym atomem. Można powiedzieć, że chmura elektronowa wodoru, na skutek tego oddziaływania zostaje "podzielona" między dwie cząsteczki, podobnie jak to się dzieje z dzieleniem się elektronami w zwykłych wiązaniach chemicznych.

Donorami protonu w wiązaniach wodorowych mogą być między innymi grupy: hydroksylowa (-OH), aminowa (-NHx) , (tiolowa (-SH), halogenowodorowa (-XH), silanolowa, a nawet węglowodorowa (-CHx). Natomiast akceptorami protonu mogą być wszystkie atomy silnie elektroujemne takie jak: fluor, azot, tlen, siarka i wszystkie chlorowce. W chemii metaloorganicznej możliwe jest również wiązanie wodorowe, w którym akceptorem są układy π-elektronowe występujące w nienasyconych związkach organicznych. Wiązania te powstają w analogiczny sposób jak wiązanie metal-węgiel w π kompleksach.

Wiązania wodorowe występują powszechnie w naturze. W idealnie czystej wodzie, w temperaturze 4°C cząsteczki wody tworzą "paczki" składające się ze średnio siedmiu cząsteczek powiązanych tymi wiązaniami. Dzięki istnieniu wiązań wodorowych możliwe jest tworzenie się trzeciorzędowych struktur białek, kwasów nukleinowych i wielu innych złożonych tworów o dużym znaczeniu biologicznym. Badaniem takich struktur opartych zwykle właśnie na wiązaniach wodorowych zajmuje się chemia supramolekularna.

Odkrycie wiązania wodorowego nie może zostać przypisane jednemu badaczowi. Pierwsze artykuły, w których postulowano istnienie wiązania wodorowego zaczęły pojawiać się w początkach XX wieku, głównie w literaturze niemieckiej i angielskiej. Początkowo jednak istnienie tego wiązania nie było powszechnie uznanym poglądem. Dopiero po 1920 roku stworzono solidne podstawy teoretyczne i podjęto szczegółowe badania nad tym wiązaniem. Pionierami w badaniach wiązania wodorowego byli Wendell Latimer, Worth Rodebush, Maurice L. Huggins, Linus Pauling. Pod koniec lat 30-tych XX wieku koncepcja wiązania wodorowego przyjęła się na dobre.

Spis treści

[edytuj] Podział wiązań wodorowych

Jakkolwiek wszystkie wiązania wodorowe są znacznie słabsze od wiązań kowalencyjnych dzieli się je na słabe, silne i bardzo silne. Granica między słabszymi i silniejszymi wiązaniami wodorowymi jest dość umowna. Na ogół przyjmuje się, że silnie wiązanie wodorowe to takie, które posiada energię powyżej 4 kcal/mol, zaś pozostałe są słabe. Najsilniejsze znane wiązania wodorowe posiadają energię zbliżoną do słabszych wiązań kowalencyjnych - rzędu 40 kcal/mol. Bardzo silne wiązania wodorowe tworzą się pomiędzy niezwykle aktywnymi donorami i akceptorami często tworząc wewnątrzmolekularne wiązania wodorowe. Istnieje również podział na wiązania wodorowe konwencjonalne i niekonwencjonalne. Jeszcze inny podział związany jest z strukturą wiązań wodorwych. Według niego wyróżniamy wiązania dwucentrowe (liniowe), trzycentrowe (dwuakceptorowe), czterocentrowe zwane również chelatowymi[1].

Przykłady wiązań wodorowych
Powiększ
Przykłady wiązań wodorowych

Drugim kryterium "siły" wiązania wodorowego jest jego długość. Klasyczne, silne wiązanie wodorowe posiada długość ok 1,5 Å, słabsze mogą mieć długość nawet do 3,0 Å. Słabe wiązania wodorowe są bardzo trudne do bezpośredniego wykrycia i dlatego dowody na jego istnienie mają zwykle charakter pośredni i czasami kontrowersyjny. Słabe wiązania wodorowe są współcześnie intensywnie badane, głównie ze względu na ich znaczenie biologiczne[2].

[edytuj] Biologiczne znaczenie wiązań wodorowych

W biologii wiązanie wodorowe pełni zasadniczą rolę, ponieważ wartość jego energii jest pośrednia pomiędzy oddziaływaniem Van der Waalsa a wiązaniem kowalencyjnym. Wiązania wodorowe mogą stosunkowo szybko powstawać i zanikać, co ma szczególne znaczenie w reakcjach biochemicznych, które zachodzą zwykle w temperaturze pokojowej.

Przykładem znaczenia wiązań wodorowych jest cząsteczka DNA, główny nośnik informacji genetycznej wszystkich wyżej rozwiniętych organizmów żywych. Składa się ona z dwóch łańcuchów nukleotydowych, które są skręcone jeden dookoła drugiego, tworząc podwójną helisę. Oba łańcuchy są utrzymywane razem przez wiązania wodorowe pomiędzy komplementarnymi parami zasad azotowych.

Inny przykład to białka. Główny łańcuch polipeptydowy białek składa się z jednostek do których przyłączone są różne podstawniki, charakterystyczne dla 20 różnych istniejących w przyrodzie aminokwasów biogennych. Grupy aminowa i karbonylowa tworzą wewnątrzcząsteczkowe wiązanie wodorowe N–H...O=C, które determinuje konformację głównego łańcucha peptydowego odpowiedzialnego za tworzenie helikalnej, bądź płaskiej struktury.

Również w przypadku polisacharydów obecność wiązań wodorowych na ogromne znaczenie.

[edytuj] Energia wiązań wodorowych

Entalpia tworzenia większości wiązań wodorowych, będąca miarą ich "siły" mieści się w granicach 2-20 kcal/mol. Energia wiązania wodorowego składa się głównie z trzech składowych: energii przyciągania kulombowskiego, energii polaryzacji i przeniesienia ładunku oraz energii odpychania. Przy znacznych odległościach pomiędzy atomami dominuje energia kulombowskiego przyciągania. Ze zmniejszeniem odległości znaczącą rolę zaczyna odgrywać polaryzacja a w ślad za nią przeniesienie ładunku oraz dalsze skrócenie odległości między atomami, w wyniku czego następuje odpychanie.

Wypadkowa sił przyciągających i odpychających wyznacza równowagową odległość między atomami w wiązaniu wodorowym. Zasadniczy wkład w obniżenie energii układu wnosi przede wszystkim oddziaływanie elektrostatyczne. W odróżnieniu do tworzenia się wiązań kowalencyjnych, wymagających silnego przesunięcia gęstości elektronowej, tworzące się wiązanie wodorowe nie powoduje znacznych przesunięć gęstości elektronowej, a występujące oddziaływania są bardziej subtelne. Dochodzi do ogólnego przesunięcia gęstości elektronowej z akceptora protonu w kierunku donora protonu w molekule. To z tego właśnie powodu donor protonu jest czasami traktowany jako akceptor elektronów. Przesunięcie gęstości elektronowej nie dotyczy tylko wolnej pary elektronowej uczestniczącej w tworzącym się wiązaniu wodorowym, ale dotyczy całej molekuły.

[edytuj] Techniki badania wiązań wodorowych

Zobacz więcej w osobnym artykule: Metody badawcze wiązania wodorowego.

Istnieje wiele metod badawczych pozwalających wykrywać i wnikliwie analizować wiązania wodorowe. Każda z nich ma pewne ograniczenia wynikające z niedoskonałości aparatury bądź związane z trudnościami w interpretacji uzyskanych wyników. Stąd też, najlepszym sposobem analizy wiązań wodorowych jest jednoczesne stosowanie kilku metod, wzajemnie uzupełniających się. Metody badawcze wiązań wodorowych można podzielić na: spektroskopowe, dyfrakcyjne, termochemiczne i teoretyczne.

[edytuj] Metody spektroskopowe

[edytuj] Metody dyfrakcyjne

[edytuj] Metody termochemiczne i fizykochemiczne

[edytuj] Metody teoretyczne

  • Metody ab-initio
  • Metody półempiryczne
  • Metody empiryczne

[edytuj] Bibliografia

  1. T. Steiner, Angew. Chem. Int. Ed. 41 (2002), 48-7,
  2. J.M Connor; M.A Ferguson-Smith “Podstawy genetyki medycznej”, 1991, Państwowy Zakład Wydawnictw Lekarskich, Warszawa

[edytuj] Przypisy

  1. G. A. Jeffrey "An Introduction to Hydrogen Bonding", 1997, New York, Oxford Uniwersity Press
  2. G. R. Desiraju, T. Steiner, "The Week Hydrogen Bonding", 1999, Oxford Uniwersity Press, Oxford
Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com