Superconductividad
De Wikipedia, la enciclopedia libre
Se denomina superconductividad a la capacidad intrínseca que poseen ciertos materiales para conducir corriente eléctrica con resistencia y pérdida de energía cercanas a cero en determinadas condiciones.
La superconductividad es una fase de ciertos materiales que se da normalmente a bajas temperaturas. No obstante no es suficiente con enfriar, también es necesario no exceder una corriente crítica ni un campo magnético crítico para mantener el estado superconductor.
Esta propiedad fue descubierta en 1911 por el físico holandés Heike Kamerlingh Onnes, cuando observó que la resistencia eléctrica del mercurio desaparecía cuando se lo enfriaba a 4 Kelvin (-269 °C).
Tabla de contenidos |
[editar] Comportamiento magnético
Aunque la propiedad más sobresaliente de los superconductores es la ausencia de resistencia, lo cierto es que no podemos decir que se trate de un material de conductividad infinita, ya que este tipo de material por sí sólo no tiene sentido termodinámico. En realidad un material superconductor es un diamagnético perfecto. Esto hace que no permita que penetre el campo, lo que se conoce como efecto Meissner.
Hay dos tipos de superconductores. Los de Tipo I no permiten en absoluto que penetre un campo magnético externo. Esto conlleva un esfuerzo energético alto, con lo que la mayoría de materiales reales se transforman en el segundo tipo. Los de tipo II son superconductores imperfectos, en el sentido en que el campo realmente penetra a través de pequeñas canalizaciones denominadas vórtices de Abrikosov, o fluxones. Estos dos tipos de superconductores son de hecho dos fases diferentes que fueron predichas por Landau y Alexei A. Abrikosov.
Cuando a un superconductor aplicamos un campo magnético externo débil lo repele perfectamente. Si lo aumentamos, el sistema se vuelve inestable y prefiere introducir vórtices para disminuir su energía. Éstos van aumentando en número colocándose en redes de vórtices que pueden ser observados mediante técnicas adecuadas. Cuando el campo es suficientemente alto, el número de defectos es tan alto que el material deja de ser superconductor. Éste es el campo crítico que hace que un material deje de ser superconductor y que depende de la temperatura.
[editar] Comportamiento eléctrico
La aparición del superdiamagnetismo es debida a la capacidad del material de crear supercorrientes. Éstas son corrientes de electrones que no disipan energía, de manera que se pueden mantener eternamente sin obedecer el Efecto Joule de pérdida de energía por generación de calor. Las corrientes crean el intenso campo magnético necesario para sustentar el efecto Meissner. Estas mismas corrientes permiten transmitir energía sin gasto energético, lo que representa el efecto más espectacular de este tipo de materiales. Debido a que la cantidad de electrones superconductores es finita, la cantidad de corriente que puede soportar el material es limitada. Por tanto, existe una corriente crítica a partir de la cual el material deja de ser superconductor y comienza a disipar energía.
En los superconductores de tipo II, la aparición de fluxones provoca que, incluso para corrientes inferiores a la crítica, se detecte una cierta disipación de energía debida al choque de los vórtices con los átomos de la red.
[editar] Obtención de materiales superconductores
Debido a las bajas temperaturas que se necesitan para conseguir la superconductividad, los materiales más comunes se suelen enfriar con helio líquido. El montaje necesario es complejo y costoso, utilizándose en muy contadas aplicaciones como, por ejemplo, la construcción de electroimanes muy potentes para resonancia magnética nuclear.
Sin embargo, se han desarrollado nuevos materiales llamados superconductores de alta temperatura que muestran la transición de fase a temperaturas superiores a la transición líquido-vapor del nitrógeno líquido. Esto ha abaratado mucho los costes en el estudio de estos materiales y abierto la puerta a la existencia de materiales superconductores a temperatura ambiente, lo que supondría una revolución en la industria del siglo XXI. La mayor desventaja de estos materiales es su composición granulada, lo que lo hace poco apropiado para diseñar cables, el uso más obvio de este tipo de materiales
[editar] Teoría
La teoría microscópica más aceptada para explicar los superconductores se denomina Teoría BCS. La superconductividad se puede explicar como una aplicación del Condensado de Bose-Einstein. El problema es que los electrones son fermiones, por lo que no se les puede aplicar esta teoría directamente. Justamente la idea de la Teoría BCS es que los electrones se aparean formando un par de fermiones que se comporta como un bosón. Esta pareja se denomina par de Cooper y su enlace está justificado en las interacciones de los electrones entre sí mediada por la estructura cristalina del material.
Otro enfoque diferente es mediante la Teoría Guinzburg-Landau, en la que se renuncia a detalles microscópicos en pos de un enfoque basado en la ruptura de simetrías en la transición de fase. Esta teoría predice dos longitudes características:
- longitud de penetración: es la distancia que penetra el campo magnético en el material superconductor
- longitud de coherencia: es el tamaño aproximado del par de Cooper