Ebooks, Audobooks and Classical Music from Liber Liber
a b c d e f g h i j k l m n o p q r s t u v w x y z





Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Bolzano–Weierstrass-tétel - Wikipédia

Bolzano–Weierstrass-tétel

A Wikipédiából, a szabad lexikonból.

A Bolzano–Weierstrass-tétel a matematika analízis nevű ágának egyik fontos, és a topológiában messzemenőkig általánosítható tétele. Alapesetben valós számorozatokról szól éspedig azt mondja ki, hogy korlátos sorozatból mindig kiválasztható konvergens részsorozat. Ebben a formában néha Bolzano–Weierstrass-féle kiválasztási tételnek is nevezik. A tétel azért jelentős, mert motiváló szerepe van a Hausdorff-féle topológikus terek kompakt halmazainak sorozatok segítségével történő jellemzéséhez.


Tartalomjegyzék

[szerkesztés] A tétel állítása

Minden korlátos, valós számsorozatnak van konvergens részsorozata.

[szerkesztés] Bizonyítás

[szerkesztés] Intervallumfelezéssel

Legyen (an) korlátos számsorozat, ekkor (an) lefedhető valamely [α,β] korlátos és zárt intervallummal. Intervallumfelezéses eljárással rekurzív módon definiálni fogunk egymásba skatulyázott, nullához tartó hosszúságú intervallumok (Ik) sorozatát a következőképpen.

  • I0:=[α00]:=[α,β]
  • Ha k természetes szám, és Ik=[αkk] már definiálva van, akkor osszuk két egyenlő hosszúságú részre: Ik = [αk,ck] U [ckk]. Valamelyikben a sorozatnak bizonyosan végtelen sok különböző indexű tagja van (ellenkező esetben ugyanis nem beszélhetnénk végtelen sorozatról). Természetesen előfordulhat, hogy mindkettőbe végtelen sok tag esik. A meghatározottság kedvéért legyen Ik+1 a két fél közül az az intervallum, melyben végtelen sok különböző indexű tag esik és ezek közül a „jobboldali” félintervallum. (Ezzel azt értük el, hogy az intervallumsorozat minden tagjában lesz sorozatbeli elem.)

A Cantor-axióma (vagy Cantor-féle közöspont tétel) szerint, mely az egymásba skatulyázott intervallumokról szól az (Ik) intervalumsorozatnak létezik egyetlen közös pontja, legyen ez c.

Megállapíthatjuk, hogy minden k természetes számra végtelen sok olyan i index (természetes szám) van, hogy aiIk, tehát minden k természetes számra igaz, hogy

H_k=\{i\in \mathbb{N}\mid a_i\in I_k\}\ne \emptyset.

Megjegyezzük, hogy a természetes számok jólrendezési tulajdonsága miatt ezeknek a nemüres halmazoknak van minimális elemük. Ezekből a halmazokból kell kiválasztanunk egy (ik) indexsorozatot (tehát egy szigorúan monoton növekvő sorozatot). Ezt szintén rekurzióval tesszük.

  • i0:=min H0
  • Ha már ik definiálva van minden k-nél nem nagyobb természetes számra, akkor legyen ik+1 az a szám, amelyik nagyobb az eddig definiált véges sok elemtől és a legkisebb ilyen elem Hk+1-ben.

Ekkor az

(a_{i_k})

sorozat c-hez konvergál.

Vegyük észre, hogy bár kiválasztásról van szó, mégsem kellett használnunk a kiválasztási axiómát, hiszen a természetes számokat a szokásos rendezés jólrendezi, így mindig konstruktívan (egyértelműen megnevezve) tudtunk kijelölni egy elemet a nemüres részhalmazaiból.

[szerkesztés] Csúcselemmel

Belátjuk, hogy minden valós sorozatból kiválasztható monoton részsorozat.

Ehhez először vezessük be a csúcselem fogalmát. ak-t csúcselemnek nevezzük, ha minden n \geq k esetén a_n \leq a_k. (Vagyis azokat az elemeket nevezzük így, amelyeknél a nagyobb indexű elemek között nincs nagyobb.)

Ekkor két eset lehetséges:

  1. Végtelen sok csúcselem van a sorozatban. Ha n_1 < n_2 < n_3 < \ldots indexek, melyekre a_{n_1}, a_{n_2}, a_{n_3}, \ldots csúcselemek, akkor ez utóbbi sorozat nyilvánvalóan monoton csökkenő.
  2. Véges sok csúcselem van a sorozatban. Vagyis létezik n0, hogy minden n > n0 esetén an nem csúcselem.
  • De a_{n_0} nem csúcselem, vagyis létezik n1 > n0, hogy a_{n_1} > a_{n_0}.
  • De a_{n_1} nem csúcselem, vagyis létezik n2 > n1, hogy a_{n_2} > a_{n_1} stb.

Ekkor viszont a_{n_1}, a_{n_2}, a_{n_3}, \ldots nyilván szigorúan monoton növő sorozat.

Vagyis minden sorozatnak van monoton részsorozata. De a mi sorozatunk egyben korlátos is, márpedig korlátos monoton sorozat konvergens.

[szerkesztés] Következmény

Az előbbi tétel múlhatatlan fontosságú következménye, hogy egy R-beli halmaz pontosan akkor korlátos és zárt, ha kompakt. Itt egészen pontosan sorozatkompaktságról van szó, azaz arról, amikor egy tetszőleges H ⊆ R halmazra teljesül, hogy minden H-beli értékeket felvevő sorozatnak van H-beli határértékű konvergens részsorozata. Az alábbi tételt néha szintén Bolzano–Weierstrass-tételnek nevezik (csak ekkor nem mondják oda a „kiválasztási” jelzőt).

Tétel – Egy H ⊆ R halmaz akkor és csak akkor korlátos és zárt, ha sorozatkompakt.

Bizonyítás. Először tegyük fel, hogy H korlátos és zárt. Ekkor a Bolzano–Weierstrass-féle kiválasztási tételből következik, hogy minden H-ban haladó sorozatnak – minthogy ezeket lefedi a korlátos H – létezik konvergens rélszsorozata. H zártságából pedig az következik, hogy minden H-beli értékeket felvevő konvergens sorozat határértéke szintén H-beli, amivel az állítás első fele bebizonyosodott.

Másrészt legyen H sorozatkompakt. Ha nem lenne korlátos, akkor tetszőleges n természetes számra

H_n:=\{x\in H\mid |x|>n\}\ne \emptyset

lenne, és így a kiválasztási axióma segítségével definiálhatunk egy (sn) sorozatot, melynek elemei rendre Hn-beliek. Ekkor minden n természetes számra sn > n, és így tetszőleges (kn) indexsorozatra (szig. mon. növekvő) |s(kn)| > kn > n, ami azt jeleni, hogy (sn)-nek nincs konvergens részsorozata.

A zártsághoz tekintsük H lezártjának egy h elemét. Ekkor létezik h határértékkel H-beli elemekből konvergens sorozat, melyből a sorozatkompaktság miatt szükségképpen h ∈ H következik.

A tétel párja a Borel–Lebesgue-féle lefedési tétel, mely szerint korlátos és zárt R-beli halmaz minden nyílt lefedéséből kiválasztható véges részlefedés (korlátos és zárt R-beli halmaz kompakt).

Megjegyezzük, hogy a tételek Rn-ben is érvényesek.

[szerkesztés] Története

A tétel Bernard Bolzanóról és Karl Weierstrassról kapta a nevét. Először Bolzano bizonyította, de bizonyítása elveszett. Weierstrass újra bebizonyította, és az analízis egyik meghatározó tétele lett. Ezt követően kiderült, hogy korábban már Bolzano belátta az állítást, ezért kapta jelenlegi nevét a tétel.

[szerkesztés] Külső hivatkozások

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com