Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Torsión (ingeniería) - Wikipedia, la enciclopedia libre

Torsión (ingeniería)

De Wikipedia, la enciclopedia libre

Viga circular bajo torsión
Aumentar
Viga circular bajo torsión

En ingeniería, torsión es la solicitación que se presenta cuando se aplica un momento sobre el eje longitudinal de un elemento constructivo o prisma mecánico, como pueden ser ejes o, en general, elementos donde una dimensión predomina sobre las otras dos, aunque es posible encontrarla en situaciones diversas.

La torsión se caracteriza geométricamente porque cualquier curva paralela al eje de la pieza deja de estar contenida en el plano formado inicialmente por la dos curvas. En lugar de eso una curva paralela al eje se retuerce alrededor de él (ver torsión geométrica).


[editar] Torsión recta: Teoría de Coulomb

La teoría de Coulomb es aplicable a ejes de transmisión de potencia. De acuerdo con la teoría de Coulomb la torsión genera una tensión cortante el cual se calcula mediante la fórmula:

\tau\ = \frac {T \rho\ }{J}


donde:
\tau\: Esfuerzo cortante.
T: Torsión.
\rho\: distancia desde el centro hasta el punto donde se está calculanda la tensión cortante.
J: Momento polar de inercia.
Esta ecuación se asienta en la hipótesis cinemática de Coulomb sobre como se deforma una pieza prismática con simetría de revolución, es decir, es una teoría aplicable sólo a elementos sección circular o circular hueca. Para piezas con sección de ese tipo se supone que el eje baricéntrico permanece inalterado y cualquier otra línea paralea al eje se transforma en una espiral que gira al rededor del eje baricéntrico, es decir, se admite que la deformación viene dada por unos desplazamientos del tipo:

u_x(x,y,z) = 0 \qquad u_y(x,y,z) = -\alpha(x) z \qquad u_z(x,y,z) = +\alpha(x) y


El tensor de deformaciones para una pieza torsionada como la anterior se obtiene derivando adecuadamente las anteriores componentes del vector de desplazamiento:

\varepsilon_{xx} = \frac{\partial u_x}{\partial x} = 0 \qquad \varepsilon_{xy} = \frac{1}{2}\left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x}\right) = -\frac{1}{2} \frac{\partial \alpha}{\partial x}z = -\frac{\alpha'_x z}{2}
\varepsilon_{yy} = \frac{\partial u_y}{\partial y} = 0 \qquad \varepsilon_{xz} = \frac{1}{2}\left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x}\right) = +\frac{1}{2} \frac{\partial \alpha}{\partial x}y = +\frac{\alpha'_x y}{2}
\varepsilon_{zz} = \frac{\partial u_z}{\partial z} = 0 \qquad \varepsilon_{yz} = \frac{1}{2}\left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y}\right)= 0


A partir de estas componentes del tensor de deformaciones usando las ecuaciones de Lamé-Hooke llevan a que el tensor tensión viene dado por:

\mathbf{T}_{tor} = \frac{G}{2} \begin{bmatrix}   0 & -\alpha'_x z & +\alpha'_x y \\   -\alpha'_x z & 0 & 0 \\     +\alpha'_x y & 0 & 0  \end{bmatrix}


Usando las ecuaciones de equivalencia se llega a la relación existente entre la función α y el momento torsor:

M_{tor} = \int_\Sigma (-\tau_{xy}z +\tau_{xz}y) dydz = \frac{\alpha'_x G}{2} \int_\Sigma (z^2 +y^2) dydz \, = \frac{\alpha'_x G}{2}I_0


Donde I_0 = I_y + I_z \,, es el momento de inercia polar que es la suma de los segundos momentos de área.

[editar] Torsión alabeada: teoría de Saint-Venant

La teoría de la torsión de Saint-Venant es aplicable a piezas prismáticas con cualquier forma de sección. Para secciones no circulares y sin simetría de revolución la teoría de Sant-Venant además de un giro relativo de la sección transversal respecto al eje baricéntrico predice un alabeo o curvatura de la sección transversal.


Icono de esbozo

El contenido de esta página es un esbozo sobre ingeniería. Ampliándolo ayudarás a mejorar Wikipedia.
Puedes ayudarte con las wikipedias en otras lenguas.

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com