Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
闵可夫斯基不等式 - Wikipedia

闵可夫斯基不等式

维基百科,自由的百科全书

数学中,闵可夫斯基不等式-{Минковского}-不等式)表明Lp空间是一个赋范向量空间。设S是一个 度量空间1 \le p\le \infty , f ,g \in L^p(S),那么f + g \in L^p(S),我们有:

\|f+g\|_p \le \|f\|_p + \|g\|_p

如果1 < p< \infty等号成立当且仅当\exists k\le 0,f = kg,或者g = kf

闵可夫斯基不等式是Lp(S)中的三角不等式。它可以用Hölder不等式来证明。和Hölder不等式一样,闵可夫斯基不等式取可数测度可以写成序列向量的特殊形式:

\left( \sum_{k=1}^n |x_k + y_k|^p \right)^{1/p} \le \left( \sum_{k=1}^n |x_k|^p \right)^{1/p} + \left( \sum_{k=1}^n |y_k|^p \right)^{1/p}

对所有实数x_1,\cdots , x_n, y_1, \cdots, y_n ,这里nS维数;改成复数同样成立,没有任何难处。

值得指出的是,如果x_1,\cdots , x_n, y_1, \cdots, y_n > 0p < 1,则\le可以变为\ge

[编辑] 积分形式的证明

我们考虑\|f+g\|_pp次幂有:

\left(\int_{a}^{b}|f(x)+g(x)|^{p}dx\right)^{\frac{1}{p}*p}=\int_{a}^{b}|f(x)+g(x)||f(x)+g(x)|^{p-1}dx

(用三角形不等式展开 | f(x) + g(x) |

\leq\int_{a}^{b}|f(x)||f(x)+g(x)|^{p-1}dx+\int_{a}^{b}|g(x)||f(x)+g(x)|^{p-1}dx

(用 Hölder不等式

\leq\left(\int_{a}^{b}|f(x)|^{p}dx\right)^{\frac{1}{p}}\left(\int_{a}^{b}|f(x)+g(x)|^{q\left(p-1\right)}dx\right)^{\frac{1}{q}}+ \left(\int_{a}^{b}|g(x)|^{p}dx\right)^{\frac{1}{p}}\left(\int_{a}^{b}|f(x)+g(x)|^{q\left(p-1\right)}dx\right)^{\frac{1}{q}}

=\left[\left(\int_{a}^{b}|f(x)|^{p}dx\right)^{\frac{1}{p}}+\left(\int_{a}^{b}|g(x)|^{p}dx\right)^{\frac{1}{p}}\right]\left(\int_{a}^{b}|f(x)+g(x)|^{qp-q}dx\right)^{\frac{1}{q}}

(利用p = qpq,因为\frac{1}{p}+\frac{1}{q}=1

\leq\left[\left(\int_{a}^{b}|f(x)|^{p}dx\right)^{\frac{1}{p}}+\left(\int_{a}^{b}|g(x)|^{p}dx\right)^{\frac{1}{p}}\right]\left(\int_{a}^{b}|f(x)+g(x)|^{p}dx\right)^{\frac{1}{p}*\frac{p}{q}}

现在我们考虑这个不等式序列的首尾两项,除以最后那个表达式的后面那个因子,我们得到:

\left(\int_{a}^{b}|f(x)+g(x)|^{p}dx\right)^{\frac{1}{p}\left(p-\frac{p}{q}\right)}\leq\left[\left(\int_{a}^{b}|f(x)|^{p}dx\right)^{\frac{1}{p}}+\left(\int_{a}^{b}|g(x)|^{p}dx\right)^{\frac{1}{p}}\right]

因为p-\frac{p}{q}=1,我们最终得出:

\left(\int_{a}^{b}|f(x)+g(x)|^{p}dx\right)^{\frac{1}{p}}\leq\left[\left(\int_{a}^{b}|f(x)|^{p}dx\right)^{\frac{1}{p}}+\left(\int_{a}^{b}|g(x)|^{p}dx\right)^{\frac{1}{p}}\right]

这就是我们所要的结论。

对于序列的情况,证明是完全类似的。

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com