Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
对偶空间 - Wikipedia

对偶空间

维基百科,自由的百科全书

Image:03wiki-zn-frontpage-icon.gif对偶空间正在翻译。欢迎您积极翻译与修订


对偶空間構造是 行向量(1×n)與列向量(n×1)的關係的抽象化。這個結構能夠在無限維度空間進行並為测度,分布及希爾伯特空間提供重要的觀點。对偶空間的應用是泛函分析理論的一特徵。 傅立叶變換亦內蘊对偶空間的概念。

目录

[编辑] 代數的对偶空间

V為 在F上的向量空間,定義其对偶空間V* 為由VF的所有線性函數的集合。 即是V的標量線性變換。V* 本身是F的向量空間並且擁有加法及標量乘法:

(\phi + \psi )( x ) = \phi ( x ) + \psi ( x ) \,
( a \phi ) ( x ) = a \phi ( x ) \,

∀ φ, ψ ∈ V*, ∀ a ∈ F , ∀ x ∈ V. 在張量的語言中,V的元素被稱為逆變(contravariant)向量而V*的元素被稱為協變(covariant)向量,同向量(co-vectors)或一形(one-form)。

[编辑] 例子

如果V是有維限的,V*的維度和V的維度便相等; 如果{e1,...,en}是V的基,V* 便應該有相對基 {e1,...,en},記作:

e^i (e_j)= \left\{\begin{matrix} 1, & \mbox{if }i = j \\ 0, & \mbox{if } i \ne j \end{matrix}\right.

如果V 是平面幾何向量的空間,V* 便是一組組的平衡線。我們能從平衡線應用到任何向量產生一個標量。

如果V是無限維度,ei 不能產生V* 的基;而V* 的維度比V的大。

例如空間R(ω)的元素是實數列,其擁有很多非零數字。Rω的雙對空間是所有實數數列的空間。這些數列(an) 被用於元素(xn) 而產生∑nanxn

[编辑] 線性映射的轉置

f: V -> W 是線性映射。 f轉置 tf : W* → V* 定義為

{}^t f (\phi ) = \phi \circ f \,
   ∀ φ ∈ W*.

f |-> tf 產生 一 單射 between the 空間 of 線性映射 from V to W and the 空間 of 線性映射 from W* to V*; this 線性映射 is an 同構 iff W is 是有維限的. 若 線性映射 f 表示作其 矩陣 A with respect to two 基 of V and W, 則 tf 表示作其 轉置矩陣 tA with respect to the 對偶基 of W* and V*. 若 g: W → X 是另一線性映射, 則 t(g o f) = tf o tg.

在范畴理論的語言裡,為任何向量空間取對偶為任何線性映射取轉置 都是向量空間范畴的逆變函子。

[编辑] 雙線性乘積及对偶空間

正如所見,如果V擁有有限維度,V跟V*是同構的,但是该同構并不自然;它是依賴于我们开始所用的V的基。事實上,任意同構Φ (V → V*) 在V上定義了一個唯一的非退化的雙線性型:

\langle v,w \rangle = (\Phi (v))(w) \,

相反地從每個在有限維空間中的非退化的雙線性積可以产生由V映射到V*的同構。

[编辑] 到雙对偶空間内的單射

存在一個由V到其雙对偶V**的自然映射Ψ ,定義為

(Ψ(v))(φ) = φ(v) ∀ v ∈ V, φ ∈ V*.

Ψ 常是單射; 当且仅当V的維數有限時, Ψ 是個同構。

[编辑] 連續對偶空間

處理拓墣向量空間時, 吾人一般只感興趣於 由該空間射到其基域的 連續線性泛函。 This gives rise to the 概念 of the 連續對偶空間 which is a 線性子空間 of the 代數 对偶空間. The 連續對偶 of a 向量空間V is denoted V′. When the context is clear, the 連續對偶 may just be called the 對偶.

The 連續對偶 V′ of a 線性賦範向量空間 V (e.g., a 巴拿赫空間 or a 希爾伯特空間) 產生一個線性賦範向量空間. The 範數 ||φ|| of a 連續線性泛函 on V is defined by

\|\phi \| = \sup \{ |\phi ( x )| : \|x\| \le 1 \}

This turns the 連續對偶 into a 線性賦範向量空間, indeed into a 巴拿赫空間.

[编辑] 例子

For any finite-dimensional 線性賦範向量空間或拓墣向量空間,正如歐德空間,the 連續对偶 and the 代數对偶 coincide.

Let 1 < p < ∞ be a 實數 and consider the 巴拿赫空間 l p of all sequences a = (an) for which

\|\mathbf{a}\|_p = \left ( \sum_{n=0}^\infty |a_n|^p \right) ^{1/p}

is finite. Define the number q by 1/p + 1/q = 1. Then the 連續对偶 of l p is naturally identified with l q: given an element φ ∈ (l p)', the corresponding element of l q is the sequence (φ(en)) where en denotes the sequence whose nth term is 1 and all others are zero. Conversely, given an element a = (an) ∈ l q, the corresponding 連續線性泛函 φ on l p is defined by φ(a) = ∑n an bn for all a = (an) ∈ l p (see Hölder's 不等式).

In a similar manner, the 連續对偶 of l 1 is naturally identified with l ∞. Furthermore, the 連續对偶 of the 巴拿赫空間 c (consisting of all convergent sequences, with the supremums 範數) and c0 (the sequences 收斂 to zero) are both naturally identified with l 1.

[编辑] 进一步的性質

If V is a 希爾伯特空間, then its 連續对偶 is a 希爾伯特空間 which is anti-isomorphic to V. This is the content of the Riesz representation theorem, and gives rise to the bra-ket notation used by 物理學人 in the 數學描述 of 量子力學.

類似 the case of the 代數 double 对偶, there is always a naturally defined injective 連續線性算子 Ψ : VV '' from V into its 連續double 对偶 V ''. This map is in fact an isometry, meaning ||Ψ(x)|| = ||x|| for all x in V. Spaces for which the map Ψ is a 雙射 are called reflexive.

The 連續对偶 can be used to define a new 拓墣 on V, called the 弱拓墣.

If the 对偶of V is separable, then so is the space V itself. The converse is not true; the space l1 is separable, but its 对偶 is l, which is not separable.

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com