Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
协变经典场论 - Wikipedia

协变经典场论

维基百科,自由的百科全书

近年来,协变经典场论又引起了研究者的兴趣。动力学在这里用有限维空间的在时空中的给定时间点上的来表述。射流丛现在被认为是这种表述的正确定义域。 本文给出一阶经典场论的协变表述的一些几何结构。

目录

[编辑] 记法

本条目记法和射流丛条目所引入的一致。并令\bar{\Gamma}(\pi)表示有紧支撑的\pi\,的截面。

[编辑] 作用量积分

一个经典场论数学上可以如下表述

\star 1\,代表M\,上的体积形式,则\Lambda = L\star 1\,,其中L:J^{1}\pi \rightarrow \mathbb{R}拉格朗日量函数。 我们在 J^{1}\pi\,上选择纤维化坐标\{x^{i},u^{\alpha},u^{\alpha}_{i}\}\,,使得

\star 1 = dx^{1} \wedge \ldots \wedge dx^{n}

作用量积分定义为

S(\sigma) = \int_{\sigma(\mathcal{M})} (j^{1}\sigma)^{*}\Lambda \,

其中\sigma \in \bar{\Gamma}(\pi),并定义于开集\sigma(\mathcal{M})\,,而j^{1}\sigma\,代表其第一射流延长(jet prolongation)。

[编辑] 作用量积分的变分

截面\sigma \in \bar{\Gamma}(\pi)\,的变分由曲线\sigma_{t} = \eta_{t} \circ \sigma\,给出,其中\eta_{t}\,是一个\mathcal{E}\,上的\pi\,-竖直向量场V\,的流,它在\mathcal{M}\,上有紧支撑。 截面\sigma \in \bar{\Gamma}(\pi)\,称为变分的驻点,如果

\left.\frac{d}{dt}\right|_{t=0}\int_{\sigma(\mathcal{M})}(j^{1}\sigma_{t})^{*}\Lambda = 0\,

这等价于

\int_{\mathcal{M}} (j^{1}\sigma)^{*}\mathcal{L}_{V^{1}}\Lambda = 0\,

其中V^{1}\,代表V\,的第一延长,按李导数的定义。 使用嘉当公式\mathcal{L}_{X}=i_{X}d + di_{X}\,斯托克斯定理以及\sigma\,的紧支撑,可以证明这等价于

\int_{\mathcal{M}} (j^{1}\sigma)^{*}i_{V^{1}}d\Lambda = 0 \,

[编辑] 欧拉-拉格朗日方程

考虑一个\mathcal{E}\pi\,-竖直向量场

V = \beta^{\alpha}\frac{\partial}{\partial u^{\alpha}}\,

其中\beta^{\alpha} = \beta^{\alpha}(x,u)\,。采用切触形式 \theta^{j} = du^{j} - u^{j}_{i}dx^{i}\, on J^{1}\pi\,,我们可以计算V\,的第一延长。然后得到

V^{1} = \beta^{\alpha}\frac{\partial}{\partial u^{\alpha}} + \left(\frac{\partial \beta^{\alpha}}{\partial x^{i}} + \frac{\partial \beta^{\alpha}}{\partial u^{j}}u^{j}_{i}\right)\frac{\partial}{\partial u^{\alpha}_{i}}\,

其中\gamma^{\alpha}_{i} = \gamma^{\alpha}_{i}(x,u^{\alpha},u^{\alpha}_{i})\,。 据此,可以证明

i_{V^{1}}d\Lambda = \left[\beta^{\alpha}\frac{\partial L}{\partial u^{\alpha}} + \left(\frac{\partial \beta^{\alpha}}{\partial x^{i}} + \frac{\partial \beta^{\alpha}}{\partial u^{j}}u^{j}_{i}\right)\frac{\partial L}{\partial u^{\alpha}_{i}}\right]\star 1 \,

因而

(j^{1}\sigma)^{*}i_{V^{1}}d\Lambda = \left[(\beta^{\alpha} \circ \sigma)\frac{\partial L}{\partial u^{\alpha}} \circ j^{1}\sigma + \left(\frac{\partial \beta^{\alpha}}{\partial x^{i}} \circ \sigma + \left(\frac{\partial \beta^{\alpha}}{\partial u^{j}} \circ \sigma \right)\frac{\partial \sigma^{j}}{\partial x^{i}} \right)\frac{\partial L}{\partial u^{\alpha}_{i}} \circ j^{1}\sigma \right]\star 1 \,

分部积分并考虑\sigma\,的紧支撑,临界条件变为

\int_{\mathcal{M}} (j^{1}\sigma)^{*}i_{V^{1}}d\Lambda \, = \int_{\mathcal{M}} \left[\frac{\partial L}{\partial u^{\alpha}} \circ j^{1}\sigma - \frac{\partial}{\partial x^{i}} \left(\frac{\partial L}{\partial u^{\alpha}_{i}} \circ j^{1}\sigma \right)\right]( \beta^{\alpha}\circ \sigma )\star 1 \,
= 0 \,

因为\beta^{\alpha}\,为任意函数,我们得到

\frac{\partial L}{\partial u^{\alpha}} \circ j^{1}\sigma - \frac{\partial}{\partial x^{i}} \left(\frac{\partial L}{\partial u^{\alpha}_{i}} \circ j^{1}\sigma \right) = 0\,

这些就是欧拉-拉格朗日方程组

[编辑] 参看

[编辑] 参考

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com