Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Uranium hexafluoride - Wikipedia, the free encyclopedia

Uranium hexafluoride

From Wikipedia, the free encyclopedia

Uranium hexafluoride
General
Systematic name Uranium hexafluoride
Uranium(VI) fluoride
Molecular formula UF6
Molar mass 352.02 g/mol
Appearance colorless solid
CAS number [7783-81-5]
Properties
Density and phase 5.09 g/cm3, solid
Solubility in water Decomposes
Melting point 64.8 °C (338.0 K)
Boiling point 56.5 °C (329.7 K) (sublimes)
Vapor pressure 16.7 kPa at 25°C
Structure
Molecular shape Octahedral
Coordination
geometry
Pseudo-octahedral
Crystal structure Hexagonal close packed (HCP)
Dipole moment zero
Thermodynamic data
Standard enthalpy
of formation
ΔfH°solid
-2317 kJ/mol
Standard molar entropy
S°solid
228 J.K−1.mol−1
Hazards
RADIOACTIVE
EU classification not listed
NFPA 704
Supplementary data page
Structure and
properties
n, εr, etc.
Thermodynamic
data
Phase behaviour
Solid, liquid, gas
Spectral data UV, IR, NMR, MS
Related compounds
Other anions Uranium(VI) chloride
Other cations Thorium(IV) fluoride
Protactinium(V) fluoride
Neptunium(VI) fluoride
Plutonium(VI) fluoride
Related compounds Uranium trifluoride
Uranium tetrafluoride
Uranium pentafluoride
Except where noted otherwise, data are given for
materials in their standard state (at 25 °C, 100 kPa)
Infobox disclaimer and references

Uranium hexafluoride, or UF6, is a compound used in the uranium enrichment process that produces fuel for nuclear reactors and nuclear weapons. It forms solid grey crystals at standard temperature and pressure (STP), is highly toxic, reacts violently with water and is corrosive to most metals. It reacts mildly with aluminum, forming a thin surface layer of AlF3 that resists further reaction.

Milled uranium ore — U3O8, or "yellowcake" — is dissolved in nitric acid, yielding a solution of uranyl nitrate UO2(NO3)2. Pure uranyl nitrate is obtained by solvent extraction, then treated with ammonia to produce ammonium diuranate (ADU). Reduction with hydrogen gives UO2, which is converted with hydrofluoric acid (HF) to uranium tetrafluoride, UF4. Oxidation with fluorine finally yields UF6.

Contents

[edit] Application in the nuclear fuel cycle

Phase diagram of UF6.
Enlarge
Phase diagram of UF6.

It is used in both of the main uranium enrichment methods, gaseous diffusion and the gas centrifuge method, because it has a triple point at 64 °C (147 °F, 337 K) and slightly higher than normal atmospheric pressure. Additionally, fluorine has only a single stable naturally occurring isotope, so isotopomers of UF6 differ in their molecular weight based solely on the uranium isotope present. [1]

It is important to note that all the other uranium fluorides are involatile solids which are coordination polymers.

Gaseous diffusion requires ca. 60 times as much energy as the gas centrifuge process; even so, this is just 4% of the energy that can be produced by the resulting enriched uranium.

In addition to its use in enrichment, uranium hexafluoride has been used in an advanced reprocessing method which was developed in the Czech Republic. In this process used oxide nuclear fuel is treated with fluorine gas to form a mixture of fluorides. This is then distilled to separate the different classes of material.

[edit] Storage in gas cylinders

About 95% of the depleted uranium produced to date is stored as uranium hexafluoride, (D)UF6, in steel gas cylinders in open air yards close to enrichment plants. Each cylinder contains up to 12.7 tonnes (or 14 US tons) of UF6. In the U.S. alone, 560,000 tonnes of depleted UF6 had accumulated by 1993. In 2005, 686,500 tonnes in 57,122 storage cylinders were located near Portsmouth, Ohio, Oak Ridge, Tennessee, and Paducah, Kentucky. [2] [3] The long-term storage of DUF6 presents environmental, health, and safety risks because of its chemical instability. When UF6 is exposed to moist air, it reacts with the water in the air to produce UO2F2 (uranyl fluoride) and HF (hydrogen fluoride) both of which are highly soluble and toxic. Storage cylinders must be regularly inspected for signs of corrosion and leaks. The estimated life time of the steel cylinders is measured in decades. [4]

There have been several accidents involving uranium hexafluoride in the United States. [5][6] The U.S. government has been converting DUF6 to solid uranium oxides for disposal. [7] Such disposal of the entire DUF6 inventory could cost anywhere from 15 million to 450 million US dollars. [8]

[edit] Chemistry

The solid state structure was reported by J.H. Levy, J.C Taylor and A.B Waugh.[9] In this paper neutron diffraction was used to determine the structures of UF6, MoF6 and WF6 at 77K.

It has been shown that uranium hexafluoride is an oxidant and a lewis acid which is able to bind to fluoride, for instance the reaction of copper fluoride with uranium hexafluoride in acetonitrile is reported to form Cu[UF7]2.5MeCN.[10]

It is interesting to note that polymeric uranium(VI) fluorides containing organic cations have been isolated and characterised by X-ray diffraction.[11]

[edit] Other uranium fluorides

The pentafluoride of uranium (UF5) and diuranium nonofluoride (U2F9) has been characterised by C.J. Howard, J.C Taylor and A.B. Waugh.[12]

It is clear that the solid is a 1D coordination polymer This is U2F9 which is a coordination polymer This is UF4 which is a coordination polymer

The trifluoride of uranium was characterised by J. Laveissiere.[13]

This is UF3 which is a coordination polymer

The structure of UOF4 was reported by J.H. Levy, J.C. Taylor, and P.W. Wilson.[14]

[edit] See also

[edit] External links

[edit] Notes

  1. ^ http://www.usec.com/v2001_02/HTML/Aboutusec_enrichment.asp Uranium Enrichment and the Gaseous Diffusion Process
  2. ^ http://web.ead.anl.gov/uranium/faq/storage/faq16.cfm
  3. ^ [http://web.ead.anl.gov/uranium/documents/index.cfm
  4. ^ http://www.ieer.org/sdafiles/vol_5/5-2/deararj.html
  5. ^ http://web.ead.anl.gov/uranium/faq/health/faq30.cfm
  6. ^ Large & Associates, Uranium Hexafluoride (UF6) Tailings, Characteristics,Transport and Storage at the Siberian Chemical Combine (Sibkhimkombinat) Tomsk, November 2005
  7. ^ http://web.ead.anl.gov/uranium/faq/storage/faq22.cfm
  8. ^ http://web.ead.anl.gov/uranium/faq/mgmt/faq27.cfm
  9. ^ J.H. Levy, J.C Taylor and A.B Waugh (1983). "Neutron powder structural studies of UF6, MoF6 and WF6 at 77 K". Journal of Fluorine Chemistry 23: 29-36. DOI:10.1016/S0022-1139(00)81276-2.
  10. ^ Berry JA, Poole RT, Prescott A, Sharp DWA, Winfield JM (1976). "The oxidising and fluoride ion acceptor properties of uranium hexafluoride in acetonitrile". J. Chem. Soc. Dalton Trans.: 272. DOI:10.1039/DT9760000272. x
  11. ^ Walker SM, Halasyamani PS, Allen S, O'Hare D (1999). "From Molecules to Frameworks: Variable Dimensionality in the UO2(CH3COO)2·2H2O/HF(aq)/Piperazine System. Syntheses, Structures, and Characterization of Zero-Dimensional (C4N2H12)UO2F4·3H2O, One-Dimensional (C4N2H12)2U2F12·H2O, Two-Dimensional (C4N2H12)2(U2O4F5)4·11H2O, and Three-Dimensional (C4N2H12)U2O4F6". J. Am. Chem. Soc. 121: 10513. DOI:10.1021/ja992145f. x
  12. ^ Howard CJ, Taylor JC, Waugh AB (1982). "Crystallographic parameters in α-UF5 and U2F9 by multiphase refinement of high-resolution neutron powder data". Journal of Solid State Chemistry 45: 396-398. DOI:10.1016/0022-4596(82)90185-2. x
  13. ^ Laveissiere J (1967). "". Bulletin de la Societe Francaise de Mineralogie et de Cristallographie 90: 304-307.
  14. ^ Levy JH, Taylor JC, Wilson PW (1977). "Structure of fluorides .17. NEUTRON-DIFFRACTION STUDY OF ALPHA-URANIUM OXIDE TETRAFLUORIDE". Journal of Inorganic and Nuclear Chemistry 39: 1989-1991.

[edit] References

  • Levy JH (1976). "Structure of fluorides. Part XII. Single-crystal neutron diffraction study of uranium hexafluoride at 293 K". J. Chem. Soc. Dalton Trans.: 219. DOI:10.1039/DT9760000219.x (xstal structure)
  • Olah GH, Welch J (1978). "Synthetic methods and reactions. 46. Oxidation of organic compounds with uranium hexafluoride in haloalkane solutions". J. Am. Chem. Soc. 100: 5396. DOI:10.1021/ja00485a024. x (selective oxidant of CFCs)
Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com