Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Infinitesimal - Wikipedia, the free encyclopedia

Infinitesimal

From Wikipedia, the free encyclopedia

In mathematics, an infinitesimal, or infinitely small number, is a number that is smaller in absolute value than any positive real number. A number x is an infinitesimal if and only if for every integer n, |nx| is less than 1, no matter how large n is. In that case, 1/x is larger in absolute value than any positive real number.

Nonzero infinitesimals are not members of the set of real numbers. In the cases of greatest interest, they are hyperreal numbers. Infinitesimal quantities are often represented using the Greek letter epsilon (ε) [1], or by means of differentials (such as dx and dy).

When used as an adjective in the vernacular, "infinitesimal" means extremely small.

[edit] History of the infinitesimal

The first mathematician to make use of infinitesimals was Archimedes, although he did not believe in the existence of physical infinitesimals. See the article on how Archimedes used infinitesimals. The Archimedean property is the property of an ordered algebraic structure of having no nonzero infinitesimals.

In India from the 12th century until the 16th century, infinitesimals were discovered for use with differential calculus by Indian mathematician Bhaskara and various Keralese mathematicians.

When Newton and Leibniz developed the calculus, they made use of infinitesimals. A typical argument might go:

To find the derivative f'(x) of the function f(x) = x², let dx be an infinitesimal. Then,
f'(x)\, =\frac{f(x + dx) - f(x)}{dx}\,
=\frac{x^2 + 2x \cdot dx + dx^2 -x^2}{dx}\,
=2x + dx\,
=2x\,
since dx is infinitely small.

This argument, while intuitively appealing, and producing the correct result, is not mathematically rigorous. The use of infinitesimals was attacked as incorrect by Bishop Berkeley in his work The Analyst: or a discourse addressed to an infidel mathematician. The fundamental problem is that dx is first treated as non-zero (because we divide by it), but later discarded as if it were zero.

It was not until the second half of the nineteenth century that the calculus was given a formal mathematical foundation by Karl Weierstrass and others using the notion of a limit. In the 20th century, it was found that infinitesimals could after all be treated rigorously. Neither formulation is right or wrong, and both give the same results if used correctly.

[edit] Modern uses of infinitesimals

Infinitesimals are legitimate quantities in the non-standard analysis of Abraham Robinson, which makes use of hyperreal numbers. In this theory, the above computation of the derivative of f(x) = x² can be justified with a minor modification: we have to talk about the standard part of the difference quotient, and the standard part of x + dx is x.

An alternative way of phrasing this argument is to observe that while x is a real number, x + dx is not. It's a hyperreal number to a "higher precision" than a standard real number that rounds off to x as the nearest real number.

Alternatively, we can have synthetic differential geometry or smooth infinitesimal analysis with its roots in category theory. This approach departs dramatically from the classical logic used in conventional mathematics by denying the law of excluded middle--i.e., not (ab) does not have to mean a = b. A nilsquare or nilpotent infinitesimal can then be defined. This is a number x where x ² = 0 is true, but x ≠ 0 can also be true at the same time. With an infinitesimal such as this, algebraic proofs using infinitesimals are quite rigorous, including the one given above.

[edit] See also

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com