Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Double counting (proof technique) - Wikipedia, the free encyclopedia

Double counting (proof technique)

From Wikipedia, the free encyclopedia

In combinatorics, double counting, also called two-way counting, is a proof technique that involves counting the size of a set in two ways in order to show that the two resulting expressions for the size of the set are equal. We describe a finite set X from two perspectives leading to two distinct expressions. Through the two perspectives, we demonstrate that each is to equal |X|.

The process necessarily provides a bijective mapping from the set to itself. This free bijection may very well be non-trivial; in certain theorems, the bijective mapping is more relevant than the expressions' equivalence.

Contents

[edit] Examples

[edit] Forming committees

For instance, consider the number of ways in which a committee can be formed from a total of n people, with from 0 through to n members:

Method 1: There are two possibilities for each person - they may or may not be on the committee. Therefore there are a total of 2 × 2 × ... × 2 (n times) = 2n possibilities.

Method 2: The size of the committee must be some number between 0 and n. The number of ways in which a committee of k people can be formed from a total of n people is the binomial coefficient

{n \choose k}.

Therefore the total number of ways is the sum of binomial coefficients over k = 0, 1, 2, ... n.

Equating the two expressions gives

\sum_{k=0}^n {n \choose k} = 2^n.

[edit] Handshaking lemma

An example of a theorem that is commonly proved with a double counting argument is the theorem that every graph contains an even number of vertices of odd degree. Let d(v) be the degree of vertex v. Every edge of the graph is incident to exactly two vertices, so by counting the number of edges incident to each vertex, we have counted each edge exactly twice. Therefore

\sum_v d(v) = 2e\,

where e is the number of edges. The sum of the degrees of the vertices is therefore an even number, which could not happen if an odd number of the vertices had odd degree.

[edit] Sum of consecutive integers

Suppose we have an (n + 1)×(n + 1) square of points. The number of points on the diagonal is exactly n + 1, and clearly the number of points S that are strictly above the diagonal equals the number of points strictly below the diagonal, so the total number of points in the square is n + 1 + 2S. On the other hand, the total number of points in the square is (n + 1)2, so

(n + 1)2 = n + 1 + 2S,

thus

n(n + 1) = 2S,

so

S = \sum_{k = 1}^n{k} = n (n + 1)/ 2.

[edit] Further examples

[edit] See also

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com