Henri Lebesgue
From Wikipedia, the free encyclopedia
Henri Léon Lebesgue [ɑ̃ʁiː leɔ̃ ləˈbɛg] (June 28, 1875, Beauvais – July 26, 1941, Paris) was a French mathematician, most famous for his theory of integration. Lebesgue's integration theory was originally published in his dissertation, Intégrale, longueur, aire ("Integral, length, area"), at the University of Nancy in 1902.
Lebesgue's father was a typesetter, who died of tuberculosis when his son was still very young, and Lebesgue himself suffered from poor health throughout his life. After the death of his father, his mother worked tirelessly to support him. He was a brilliant student in primary school, and he later studied at the Ecole Normale Supérieure.
Lebesgue married the sister of one of his fellow students, and he and his wife had two children, Suzanne and Jacques. He worked on his dissertation while teaching in Nancy at a preparatory school.
Contents |
[edit] Lebesgue's theory of integration
This is a non-technical treatment from a historical point of view; see the article Lebesgue integration for a technical treatment from a mathematical point of view.
Integration is a mathematical operation that corresponds to the informal idea of finding the area under the graph of a function. The first theory of integration was developed by Archimedes in the third century BC with his method of quadratures, but this could be applied only in limited circumstances with a high degree of geometric symmetry. In the seventeenth century, Isaac Newton and Gottfried Wilhelm Leibniz independently discovered the idea that integration was roughly the inverse operation of differentiation, a way of measuring how quickly a function changed at any given point on the graph. This allowed mathematicians to calculate a broad class of integrals for the first time. However, unlike Archimedes' method, which was based on Euclidean geometry, Newton's and Leibniz's integral calculus did not have a rigorous foundation.
In the nineteenth century, Augustin Cauchy finally developed a rigorous theory of limits, and Bernhard Riemann followed up on this by formalising what is now called the Riemann integral. To define this integral, one fills the area under the graph with smaller and smaller rectangles and takes the limit of the sums of the areas of the rectangles at each stage. For some functions, however, the total area of these rectangles does not approach a single number. As such, they have no Riemann integral.
Lebesgue invented a new method of integration to solve this problem. Instead of using the areas of rectangles, which put the focus on the domain of the function, Lebesgue looked at the codomain of the function for his fundamental unit of area. Lebesgue's idea was to first build the integral for what he called simple functions, measurable functions that take only finitely many values. Then he defined it for more complicated functions as the least upper bound of all the integrals of simple functions smaller than the function in question.
Lebesgue integration has the beautiful property that every function with a Riemann integral also has a Lebesgue integral, and for those functions the two integrals agree. But there are many functions with a Lebesgue integral that have no Riemann integral.
As part of the development of Lebesgue integration, Lebesgue invented the concept of Lebesgue measure, which extends the idea of length from intervals to a very large class of sets, called measurable sets (so, more precisely, simple functions are functions that take a finite number of values, and each value is taken on a measurable set). Lebesgue's technique for turning a measure into an integral generalises easily to many other situations, leading to the modern field of measure theory.
The Lebesgue integral was deficient in one respect. The Riemann integral had been generalised to the improper Riemann integral to measure functions whose domain of definition was not a closed interval. The Lebesgue integral integrated many of these functions (always reproducing the same answer when it did), but not all of them. The Henstock integral is an even more general notion of integral (based on Riemann's theory rather than Lebesgue's) that subsumes both Lebesgue integration and improper Riemann integration. However, the Henstock integral depends on specific features of the real line and so does not generalise as well as the Lebesgue integral does.
[edit] Lebesgue's other achievements
In addition to his dissertation, Lebesgue wrote two books, Leçons sur l'intégration et la recherche des fonctions primitives (1904) and Leçons sur les séries trigonométriques (1906). He also wrote a number of papers.
Although Lebesgue's integral was an example of the power of generalisation, Lebesgue himself did not approve of generalisation in general and spent the rest of his life working on very specific problems, generally in mathematical analysis. He once wrote, "Réduites à des théories générales, les mathématiques seraient une belle forme sans contenu" ("Reduced to general theories, mathematics would be a beautiful form without content").
[edit] See also
- Dominated convergence theorem
- Lebesgue covering dimension
- Lebesgue point
- Lebesgue's number lemma
- Lebesgue spine
[edit] External links
- O'Connor, John J., and Edmund F. Robertson. "Henri Lebesgue". MacTutor History of Mathematics archive.
[edit] Original articles written by Lebesgue (in French)
- Sur le problème des aires 1, 1903
- Sur les séries trigonométriques, 1903
- Une propriété caractéristique des fonctions de classe 1, 1904
- Sur le problème des aires 2, 1905
- Contribution à l'étude des correspondances de M. Zermelo, 1907
- Sur la méthode de M. Goursat pour la résolution de l'équation de Fredholm, 1908
- Sur les intégrales singulières, 1909
- Remarques sur un énoncé dû à Stieltjes et concernant les intégrales singulières, 1909
- Sur l'intégration des fonctions discontinues, 1910
- Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz, 1910
- Sur un théorème de M. Volterra, 1912
- Sur certaines démonstrations d'existence., 1917
- Remarques sur les théories de la mesure et de l'intégration., 1918
- Sur une définition due à M. Borel (lettre à M. le Directeur des Annales Scientifiques de l'École Normale Supérieure), 1920
- Exposé géométrique d'un mémoire de Cayley sur les polygones de Poncelet, 1921
- Sur les diamètres rectilignes des courbes algébriques planes, 1921
- Sur la théorie de la résiduation de Sylvester, 1922
- Remarques sur les deux premières démonstrations du théorème d'Euler relatif aux polyèdres, 1924
- Démonstration du théorème fondamental de la théorie projective des coniques faite à l'aide des droites focales de M. P. Robert, 1935