萊納斯·鮑林
维基百科,自由的百科全书
萊納斯·卡爾·鮑林 |
||
---|---|---|
出生 | ||
逝世 |
萊納斯·卡爾·鮑林(-{Linus Carl Pauling}-,1901年2月28日—1994年8月19日),美國著名化学家,量子化學的先驱者之一。1954年因在化學鍵方面的工作取得诺贝尔化学奖,1962年因反對核彈在地面測試的行動获得诺贝尔和平奖,成為两位获得诺贝尔奖不同奖项的人之一(另一人為居里夫人)。其後他主要的行動為支持維他命C在醫學的功用。鮑林被认为是20世纪对化学科学影响最大的人之一,他所撰写的《化学键的本质》被认为是化学史上最重要的著作之一,他提出的电负性、共振论、价键理论、杂化轨道、蛋白质折叠等概念和理论在当今的化学界都有着非常基础和广泛的使用。
目录 |
[编辑] 生平
1901年2月28日鮑林出生于美国俄勒冈州波特兰市一个贫苦家庭,鲍林的父亲是一位药剂师,母亲则患有严重的抑郁症。幼年的鲍林对父亲的工作非常感兴趣,常观察父亲配制药物,直到1910年鲍林的父亲病故,人们认为这一时期父亲潜移默化的影响奠定勒鲍林日后走上化学科学研究道路的基础。
1917年家境贫寒的鲍林进入俄勒冈农学院攻读化学工程专业,1922年他获得学士学位。大学毕业后鲍林申请了加州理工学院的研究生,洽逢美国物理化学学派的宗师诺伊斯刚刚从麻省理工学院来到加州理工学院,鲍林加入了诺伊斯的研究团队,从事X-射线衍射法晶体结构的研究。在加州理工学院,鲍林接触到了热力学、统计力学、动力学、量子力学等物理化学和物理学的基础理论。1925年鲍林获得哲学博士学位,毕业后的鲍林前往欧洲留学,当时的欧洲是量子理论发展的中心,鲍林在那里接触到了当时物理学界和物理化学界的顶尖人物。1927年,鲍林返回美国,哈佛大学和加州理工学院争相聘请他担任教职,哈佛大学甚至同意依照鲍林的意思建立一个量子化学系,而在那个时代,量子化学还是世人闻所未闻的概念。但是鲍林最终选择了加州理工学院,他在加州理工开设的第一门课程是“波动力学及其在化学上的应用”后来他将这门课的讲义整理成文,于1935年出版了《量子力学导论——及其在化学中的应用》这是历史上第一本以化学家为读者的量子力学教科书。鲍林在加州理工学院一直工作到1963年,其间获得了1954年诺贝尔化学奖。1963年-1967年鲍林供职于加州圣巴巴拉民主学院研究中心1967年-1969年任职于加州大学圣迭戈分校化学系,1969年-1973年任职于斯坦福大学,1973年之后,任职于以他名字命名的鲍林科学和医学研究所直到1994年逝世。
[编辑] 学术贡献
[编辑] 价键理论
鲍林自1930年代开始致力于化学键的研究,1931年2月发表价键理论,此后陆续发表相关论文,1939年出版了在化学史上有划时代意义的《化学键的本质》一书。这部书彻底改变了人们对化学键的认识,将其从直观的、臆想的概念升华为定量的和理性的高度,在该书出版后不到30年内,共被引用超过16000次,至今仍有许多高水平学术论文引用该书观点。由于鲍林在化学键本质以及复杂化合物物质结构阐释方面杰出的贡献,他赢得了1954年诺贝尔化学奖。
鲍林对化学键本质的研究,引申出了广泛使用的杂化轨道概念。杂化轨道理论认为,在形成化学键的过程中,原子轨道自身回重新组合,形成杂化轨道,以获得最佳的成键效果。根据杂化轨道理论,饱和碳原子的四个价层电子轨道,即一个2S轨道和三个2P轨道喙线性组合成四个完全对等的sp3杂化轨道,量子力学计算显示这四个杂化轨道在空间上形成正四面体,从而成功的解释了碳的正四面体结构。
[编辑] 电负性
鲍林在研究化学键键能的过程中发现,对于同核双原子分子,化学键的键能会随着原子序数的变化而发生变化,为了半定量或定性描述各种化学键的键能以及其变化趋势,鲍林于1932年首先提出了用以描述原子核对电子吸引能力的电负性概念,并且提出了定量衡量原子电负性的计算公式。电负性这一概念简单、直观、物理意义明确并且不失准确性,至今仍获得广泛应用,是描述元素化学性质的重要指标之一。
[编辑] 共振论
鲍林提出的共振论是20世纪最受争议的化学理论之一。也是有机化学结构基本理论之一。为了求解复杂分子体系化学键的薛定谔方程,鲍林使用了变分法。在原子核位置不变的前提下,提出体系所有可能的化学键结构,写出每个结构所对应的波函数,将体系真实的波函数表示为所有可能结构波函数的线性组合,经过变分法处理后,得到体系总能量最低的波函数形式。这样,体系的化学键结构就表示成为若干种不同结构的杂化体,为了形象地解释这种计算结果的物理意义,鲍林提出共振论,即体系的真实电子状态是介于这些可能状态之间的一种状态,分子是在不同化学键结构之间共振的。鲍林将共振论用于对苯分子结构的解释获得成功,使得共振论成为有机化学结构基本理论之一。
1950年代,苏联和中国等共产主义国家出于意识形态的考虑,对共振论、现代遗传学等科学理论展开政治批判,共振论被作为唯心主义的典型加以批判。由于这场政治运动的影响,在共产主义国家量子化学的传播和发展几乎陷入停顿。1980年代以后,这些国家的学术界逐渐破除了政治因素对科学的束缚,重新审视和接受共振论的思想。
在量子化学领域,随着分子轨道理论的出现和发展,鲍林的化学键理论由于在数学处理上的繁琐和复杂而逐渐处于下风,共振论方法作为一种相对粗糙的近似处理也较少使用了,但是在有机化学领域,共振论仍是解释物质结构,尤其是共轭体系电子结构的有力工具。
[编辑] 生物大分子结构和功能
1930年代中期,随着加州理工学院加强其再在生物学领域的发展,鲍林得以接触一批生物学大师,期间鲍林对他原本没有兴趣的生物大分子结构研究产生了兴趣。鲍林在生物大分子领域最初的工作是对血红蛋白结构的确定,并且通过实验首先证实,在得氧和失氧状态下,血红蛋白的结构是不同的,为了进一步精确测定蛋白质结构,鲍林首先想到他早期从事的x-射线衍射晶体结构测试的方法,他将这种方法引入到蛋白质结构测定中来,并且推导了经衍射图谱计算蛋白质中重原子坐标的公式。至今通过蛋白质结晶,进行x-射线衍射实验仍然是测定蛋白质三级结构的主要方法,人类已知结构的绝大部分蛋白质都是经由这种方法测定获得的。
结合血红蛋白的晶体衍射图谱,鲍林提出蛋白质中的肽链在空间中是呈螺旋形排列的,这就是最早的α螺旋结构模型,有科学史学者认为沃森和克里克提出的DNA双螺旋结构模型就是受到了鲍林的影响,而鲍林之所以没有提出双螺旋,是因为他在1950年代受到美国麦卡锡主义的影响,错过了一次在英国举行的学术会议,没有能够看到一副重要的DNA晶体衍射图谱。
1951年鲍林结合他在血红蛋白进行的实验研究,以及对肽链和肽平面化学结构的理论研究,提出了α螺旋和β折叠是蛋白质二级结构的基本构建单元的理论。这一理论成为20世纪生物化学若干基本理论之一,影响深远。
此外,鲍林还提出了酶催化反应的机理、抗原与抗体结构互补性原理以及DNA复制过程中的互补性原理,这些理论在20世纪的生物化学和医学领域都扮演了非常重要的角色。
[编辑] 社會工作
自從第二次世界大戰後,鮑林就不關心政治,可是這場戰爭大改他的生命,他成為和平的行動主義者。1946年,他加入由愛因斯坦領導的希望提醒公眾發展核武器的禍害的組織——原子能科學家緊急委員會。
[编辑] 外部鏈結