几何学
维基百科,自由的百科全书
几何学是研究空间关系的数学分支,有时简称为几何。几何是近代数学的两大领域之一,另外一个是研究数量关系的领域。现代概念上的几何其抽象程度和一般化程度大幅提高,并与分析、抽象代数和拓扑学紧密结合,很多分支几乎无法认出是从早期的几何学传承而来。
目录 |
[编辑] 簡史
几何学有悠久的历史。最古老的欧氏几何基于一组公设和定义,人们在公设的基础上运用基本的逻辑推理构做出一系列的命题。可以说,《几何原本》是公理化系统的第一个范例,对西方数学思想的发展影响深远。
一千年后,笛卡儿在《方法论》的附錄《几何》中,将坐标引入几何,帶來革命性进步。从此几何问题能以代数的形式来表达。实际上,几何问题的代数化在中国数学史上是显著的方法。笛卡儿的创造,是否有东方数学的影响在里面,由于东西方数学交流史研究的欠缺,尚不得而知。
欧几里得几何学的第五公设,由于并不自明,引起了历代数学家的关注。最终,由罗巴切夫斯基和黎曼建立起两种非欧几何。
几何学的现代化则归功于克莱因、希尔伯特等人。克莱因在普吕克的影响下,应用群论的观点将几何变换视为特定不变量约束下的变换群。而希尔比特为几何奠定了真正的科学的公理化基础。应该指出几何学的公理化,影响是极其深远的,它对整个数学的严密化具有极其重要的先导作用。它对数理逻辑学家的启发也是相当深刻的。
[编辑] 古代几何学
几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于公元前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。
中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。
[编辑] 名称的来历
几何这个词最早来自于希腊语“γεωμετρία”,由“γέα”(土地)和“μετρε ĭν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。
1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一次的使用出现。
[编辑] 分支学科
[编辑] 参考文献
- 《世界数学史简编》,梁宗巨,1981年,辽宁人民出版社,第90页~第92页
几何术语 编辑 |
点 | 顶点 | 切点 | 黄金分割 | 直线 | 平行线 | 曲线 | 切线 | 线段 | 平面 | 面积 | 体(几何) | 长方体 | 立方體 | 棱锥 | 圆锥 | 圆台 | 圆柱 | 球 | 体积 | 角 | 边 | 高 | 长 | 宽 | 圆球 | 椭球 | 三角形 | 四边形 | 梯形 | 平行四边形 | 菱形 | 矩形 | 正方形 | 多边形 | 正多面体 | 圆 | 周长 | 圆周率 | 弦 | 扇形 | 弓形 | 椭圆 | 螺线 | 相似 | 全等 | 平行 | 垂直 | 长度 | 距离 | 尺规作图 | 尺 | 圆规 | 定理 | 公理 | 證明 | 圓錐曲線│表面積 | 比例 |