Privacy Policy Cookie Policy Terms and Conditions Proces Wienera - Wikipedia, wolna encyklopedia

Proces Wienera

Z Wikipedii

Proces Wienera jest procesem stochastycznym nazwanym dla uhonorowania osiągnięć matematyka amerykańskiego Norberta Wienera. Jest też często nazywanym ruchem Browna, gdyż jest modelem matematycznym procesu fizycznego o tej nazwie. Proces Wienera jest najbardziej znanym przykładem procesu gaussowskiego, a ponadto jest szczególnym przypadkiem ogólniejszego procesu procesu Lévy'ego.

Spis treści

[edytuj] Definicja

Proces stochastyczny \left\{W_{t}\right\}_{t \geq 0} nazywamy procesem Wienera (standardowym procesem Wienera), gdy spełnia następujące warunki:

  1. W0 = 0 z prawdopodobieństwem równym jeden,
  2. W ma przyrosty niezależne,
  3. \forall_{0 \leq s \leq t} ~ W_{t}-W_{s} \sim \mathcal{N}(0,t-s),
  4. trajektorie procesu W są ciągłe.

[edytuj] Własności

Proces Wienera jest jednym z najlepiej zbadanych procesów stochastycznych. Oto niektóre z jego własności:

  1. Cechy trajektorii - pomimo że zgodnie z założeniem definicji trajektorie procesu Wienera są ciągłe, to nie przejawiają innych regularności. Dowodzi się, że prawie każda trajektoria ma wahanie nieskończone, co implikuje, że jest nieróżniczkowalna (w każdym punkcie czasu).
  2. Proces Wienera posiada mocną własność Markowa.
  3. Prawo odbicia - po dojściu do pewnego poziomu trajetoria procesu Wienera z równym prawdopodobieństwem może pójść w dół, jak i do góry. Ściśle, prawo odbicia wyraża się wzorem \mathbb{P}(\sup_{0\leq s \leq t}W_s >a) = 2 \mathbb{P}(W_t >a)
  4. Inwersja - jeśli Wt jest procesem Wienera, to proces V_t = tW_{1/t} \forall_{t>0} i V0 = 0 też jest procesem Wienera.
  5. Prawo iterowanego logarytmu - opisuje asymptotyczne zachowanie się trajektorii (dzięki zastosowaniu inwersji możemy też badać trajektorie w otoczeniu 0). \mathbb{P}(\lim_{t\rightarrow +\infty}\sup\frac{W_t}{\sqrt{2t \log \log t}}=1)=1

[edytuj] Konstrukcja procesu Wienera

Nie jest rzeczą oczywistą, że istnieje proces spełniający warunki podane w definicji. Istnieje kilka dowodów tego faktu. Przedstawiony poniżej najbardziej odpowiada intuicyjnemu rozumieniu procesu jako modelu ruchu Browna. Rozpatrzmy cząstkę poruszającą się w jednym wymiarze. W każdej jednostce czasu cząstka przemieszcza się o jednostkę odległości albo w lewo albo w prawo z prawdopodobieństwem 1/2. Kierunek poruszania nie zależy od poprzedniego przebiegu ruchu. Odpowiada to sytuacji patrzenia na cząsteczkę w wielkim zbliżeniu i przy zwolnionym czasie. Zmniejszając odpowiednio jednostkę odległości i przyspieszając czas uzyskujemy obraz cząstki wykonującej ruch chaotyczny. Innymi słowy proces Wienera jest "procesem granicznym" dla błądzenia losowego, przy zmniejszaniu skali czasowej i przestrzennej. W sposób ścisły powyższe rozumowanie ujmuje twierdzenie Donskera.

[edytuj] Proces wielowymiarowy

Standardowy proces Wienera opisany powyżej opisuje błądzenie cząstki, której ruch ograniczony jest do prostej. Proces n-wymiarowy definiujemy następująco: W=(W_1,W_2,\ldots,W_n), gdzie Wi to niezależne od siebie jednowymiarowe procesy Wienera. Warto wspomnieć, że w przypadku jednowymiarowym prawie każda trajektoria przechodzi przez każdy punkt prostej. Dla procesu dwuwymiarowego prawie każda trajektoria jest gęsta na płaszczyźnie, natomiast dla procesów w przestrzniach o większej liczbie wymiarów, każda trajektoria jest zbiorem nigdzie gęstym.

Zalążek artykułu To jest tylko zalążek artykułu związanego z matematyką. Jeśli możesz, rozbuduj go.


[edytuj] Zobacz też

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu